Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a khoảng cách từ điểm A đến mặt phẳng (SBC) là , khoảng cách giữa SA, BC là a 15 5 . Biết hình chiếu của S lên mặt phẳng (ABC) nằm trong tam giác ABC tính thể tích khối chóp S.ABC
A. a 3 4
B. a 3 8
C. a 3 3 4
D. a 3 3 8
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1. Biết khoảng cách từ A đến mặt phẳng (SBC) là 6 4 , từ B đến mặt phẳng (SAC) là 15 10 từ C đến mặt phẳng (SAB) là 30 20 và hình chiếu vuông góc của S xuống đáy nằm trong tam giác ABC. Thể tích khối chóp S.ABC bằng
A. 1 36
B. 1 48
C. 1 12
D. 1 24
Cho hình chóp S.ABC có đáy là ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Biết hình chóp S.ABC có thể tích bằng a 3 . Tính khoảng cách d từ điểm A đến mặt phẳng (SBC):
A. d = 6 a 195 65
B. d = 4 a 195 195
C. d = 4 a 195 65
D. d = 8 a 195 195
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC), tính cos α khi thể tích khối chóp S . A B C nhỏ nhất.
A. cos α = 2 2
B. cos α = 1 3
C. cos α = 3 3
D. cos α = 2 3
Cho hình chóp S.ABC có cạnh SA vuông góc với mặt đáy (ABC), tam giác ABC là tam giác cân tại A, AB = a, B A C ^ = 120 0 . Tính theo a khoảng cách từ A đến mặt phẳng (SBC), biết khối chóp S.ABC có thể tích bằng 3 a 3 24
A. a 2 4
B. a 6 4
C. 3 a 2 10
D. a 2
Cho hình chóp S.ABC có BC = a. Góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60 0 Gọi H là hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC). Biết rằng tam giác HBC vuông cân tại H và thể tích khối chóp S.ABC bằng a 3 Khoảng cách từ A đến mặt phẳng (SBC) bằng
A. 2 3 a
B. 6 3 a .
C. 2a
D. 6a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , A B C ^ = 30 ° , tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách h từ điểm C đến mặt phẳng (SAB).
A. h = 2 a 39 13
B. h = a 39 13
C. h = a 39 26
D. h = a 39 52
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, ABC = 30 ° . Mặt bên SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách từ C đến mặt phẳng (SAB).
A. 39 a 13 .
B. 39 a 3 .
C. 26 a 13 .
D. 39 a 26 .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B với AB=a và BAC= 30 ° Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC) Tính khoảng cách d từ điểm A đến mặt phẳng (SBC) biết khối chóp S.ABC có thể tích bằng a 3 3 36
A. d = a 2 4
B. d = a 3
C. d = a 5 3
D. d = a 3 6