Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho hình chóp S.ABC, SA vuông góc (ABC) đáy là tam giác ABC đều cạnh a và SA \(=a\sqrt{3}\)
a) tính góc giữa đường thẳng SB và AB
b) tính góc giữa đường thẳng SC và AC
c) M là trung điểm BC. Tính góc giữa đường thẳng SM và AM
Cho hình chóp S.ABCD có SA=a, SB=2a, SC=3a, A S B ^ = B S C ^ = 60 ° , C S A ^ = 90 ° . Gọi α là góc giữa hai đường thẳng SA và BC. Tính cos α.
A. cos α = 7 7
B. cos α = - 7 7
C. cos α = 0
D. cos α = 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật biết AB=a; AD= 2a; SA vuông góc với đáy, SA=a√2. Xác định và tính góc giữa. a) Các đường thẳng SB, SC, SD với mp đáy. b) SC với các mp (SAD) và ( SAB). c) SA với mp (SCD). d) SB và (SAC).
Cho hình chóp S.ABCD có đáy là hình vuông; SA = SB = a và SA vuông góc (ABCD) Gọi M là trung điểm AD, tính khoảng cách giữa hai đường thẳng SC và BM
A. a 14 6
B. 6 a 14
C. a 14 2
D. 2 a 14
Cho hình chóp S.ABC có các cạnh SA, SB, SC đôi một vuông góc với nhau và SA = a, SB = 2a, SC = 3a. Khoảng cách từ điểm S đến mặt phẳng (ABC) là
A. 5 a 6
B. 6 a 7
C. 7 a 6
D. 6 a 5
Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với AB = a 2 và SA=SB=SC=SD=2a. Gọi K là hình chiếu vuông góc của B trên AC, H là hình chiếu vuông góc của K trên SA. Tính cosin góc giữa đường thẳng SB và mặt phẳng (BKH).
Cho hình chóp S.ABC với SA⊥SB, SB⊥SC, SC⊥SA, SA=SB=SC=a. Gọi B′,C′ lần lượt là hình chiếu vuông góc của S trên AB,AC. Thể tích của hình chóp S.AB′C′ là
Cho hình chóp S.ABC có SA, SB,SC đôi một vuông góc. Gọi M là trung điểm của BC. CMR
a) \(SA\perp BC\)
b) \(SA\perp SM\)
Cho hình chóp A.ABC có SA = SB = SC = AB = AC = a và BC = a√2. Tính góc giữa hai đường thẳng AB và SC.