M (trong MG) là điểm nào em? m trong bài là đường thẳng, không phải điểm
M (trong MG) là điểm nào em? m trong bài là đường thẳng, không phải điểm
Cho hình bình hành ABCD. Gọi E là một điểm bất kỳ trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ qua F song song với BD cắt CD ở G. Chứng minh A H . C D = A D . C G .
cho hình bình hành ABCD ,E thuộc AB,F thuộc AD. Đường thẳng đi qua D và song sog với EF cắt AC tại I. Đường thẳng đi qua B song song EF cắt AC tại K. Chứng minh:
a)AI=CK
b)AB/AE+AD/AF=AC/AN (N là giao điểm của EF và AC
cho hình bình hành ABCD, M thuộc AC từ M vẽ các đường thẳng xong xong với các cạnh của hình hình hành cắt AB,BC,CD,DA tại E,F,G,H chứng minh rằng HE // GF, 3 đường EF,GH,AC đồng quy
Trên đường chéo aAC của hình bình hành ABCD lấy I. Qua I kẻ hai đường thẳng bất kỳ sao cho đường thẳng thứ nhất cắt AB, CD lần lượt tại E, F, đường thẳng thứ hai cắt AD, BC, lần lượt tại G,H. Chứng minh GE//FH
Cho hình bình hành ABCD, kẻ đường thẳng a bất kỳ cắt AB, AD lần lượt tại E và F. Giả sử G là giao điểm của a với AC. chứng minh AB/AE + AD/AF = AC/AG
4. Cho hình bình hành ABCD, kẻ đường thẳng đi qua D cắt AB ở M cắt BC ở N cái AC L
a) Chứng minh AM CB DM AB CN DN suy ra AM . CN không đổi.
b) Chung minh ID' IM. IN.
c) Vẽ Bx // AC, Bx cắt MN ở E. Chứng minh EM DM EN DN
d) Lấy K bất kỳ trên cạnh CD. KI và KN cát AB ở P và Q. Chứng minh MP/MA= MO/MB
1 ) Cho tam giác ABC . Phân giác góc A cắt cạnh BC tại d . Qua d vẻ đường thẳng song song với AB , đường này cắt AC tại E . Đường thẳng qua E // BC cắt AB tại F
- Chứng minh : AE = BF
2) Cho hình bình hành ABCD . Gọi MNPQ theo thứ tự là trung điểm của cạnh AB , BC , CD , DA đường thẳng AN cắt DM , BP theo thứ tự tại E và F . Đường thẳng CQ cắt BP , DM theo thứ tự G , H
A) chứng minh : tứ giác EFGH là hình bình hành
B ) chứng minh : các đường thẳng AC , BD , EG, FH đồng quy tại một điểm
Cho hình chữ nhật ABCD, 2 đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc OA. BE cắt AD tại M, Qua P kẻ đường thẳng song song với BM cắt BC tại N và cắt AC tại F.
a) Chứng minh: BMDN là hình bình hành
b) Chứng minh: O là trung điểm EF
c) Qua E kẻ đường thẳng song song với BD cắt AD tại H, cắt CD tại I. Gọi O' là trung điểm IH. Chứng minh OO' song song DN
d) Gọi K là điểm đối xứng với D qua O'. Chứng minh: K, M, B thẳng hàng
Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.