Tìm tất cả giá trị thực của tham số m để hàm số y = x 3 3 + ( m + 1 ) x 2 + ( 3 m + 1 ) x + 2 đồng biến trên R
A. 0 ≤ m ≤ 1
B. m ≥ 1 m ≤ 0
C. 0 < m < 1
D. m > 1 m < 0
Cho hàm số y = 1 3 x 3 + 2 x 2 + ( m + 2 ) x - m . Tìm tập hợp S tất cả các giá trị thực của tham số m để hàm số đồng biến trên ℝ
A. S = ( - ∞ ; 2 ]
B. S = ( - ∞ ; 2 )
C. S = [ 2 ; + ∞ )
D. S = ( 2 ; + ∞ )
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y = x 3 - 3 x 2 + ( 2 m - 1 ) x + 2019 đồng biến trên (2;+∞)
A. m ≥ 1 2
B. m < 1 2
C. m = 1 2
D. m ≥ 0
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y = m cos x + 1 cos x + m đồng biến trên khoảng 0 ; π 3
A. - 1 ; 1
B. - ∞ ; - 1 ∪ 1 ; + ∞
C. [ - 1 ; - 1 2 )
D. - 1 ; - 1 2
Cho hàm số y = 2 x 3 - 3 m x 2 + 3 ( 5 m 2 + 1 ) x - 3 s i n x với m là tham số thực. Tìm tập hợp tất cả các giá trị của m để hàm số đồng biến trên (l;3).
A . m ≥ 1
B . m ≤ - 1
C . m > 0
D . m ∈ R
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x)-1=m có đúng 2 nghiệm
A. -2 < m < -1
B. m > 0, m = -1
C. m = -2, m > -1
D. m = -2, m ≥ -1
Tìm tất cả các giá trị của tham số m để hàm số y = x + m ( sin x + c o s x ) đồng biến trên R
A. m < - 1 2 ∪ m > 1 2
B. - 1 2 ≤ m ≤ 1 2
C. - 3 < m < 1 2
D. m ≤ - 1 2 ∪ m ≥ 1 2
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x − 1 x − m nghịch biến trên khoảng − ∞ ; 2 .
A. 1 , + ∞
B. 2 , + ∞
C. 2 , + ∞
D. 1 , + ∞
Cho đa thức f(x) hệ số thực và thỏa điều kiện 2 f x + f 1 - x = x 2 , ∀ x ∈ ℝ . Tìm tất cả các giá trị của tham số thực m để hàm số y = 3 x . f x + m - 1 x + 1 đồng biến trên ℝ
A. m ∈ ℝ
B. m ≥ 10 3
C. m ≤ 1
D. m > 1