Đáp án D
PTHĐGĐ: x 2 + ( m − 3 ) x − 2 m − 1 = 0 ( * ) ĐK: ( m − 3 ) 2 + 4 ( 2 m + 1 ) > 0
Gọi x1, x2 là 2 nghiệm phân biệt của (*) ⇒ A x 1 ; x 1 + m , B x 2 ; x 2 + m với S = x1 + x2 = 3 – m
Gọi G là trọng tâm tam giác OAB ⇒ G x 1 + x 2 3 ; x 1 + x 2 + 2 m 3 ⇒ G S 3 ; S + 2 m 3
G ∈ ( C ) : x 2 + y 2 − 3 y = 4
⇒ S 9 2 + ( S + 2 m ) 9 2 − ( S + 2 m ) = 4 ⇔ S 2 + ( S + 2 m ) 2 − 9 ( S + 2 m ) = 36
⇔ ( 3 − m ) 2 + ( 3 + m ) 2 − 9 ( 3 + m ) = 36 ⇔ 2 m 2 − 9 m − 45 = 0 ⇔ m = − 3 ( n ) m = 15 2 ( n )