Từ đồ thị hàm số ta có
Theo yêu cầu bài toán ta cần có:
Chọn A.
Từ đồ thị hàm số ta có
Theo yêu cầu bài toán ta cần có:
Chọn A.
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ dưới. Xét hàm số g ( x ) = f ( 2 x 3 + x - 1 ) + m . Tìm m để m a x 0 ; 1 g x = - 10
A. m = -13
B. m = 5
C. m = 3
D. m = -1
Cho hàm số y = f(x) liên tục trên ℝ có đồ thị như hình vẽ bên. Xét hàm số g x = f x + 3 x − 1 + 2 m . Tìm m để giá trị lớn nhất của g(x) trên đoạn [-1;0] bằng 1.
A. m = - 1
B. m = - 2
C. m = - 1 2
D. m = 1
Cho hai hàm số y=f(x) và y=g(x) là các hàm xác định và liên tục trên R và có đồ thị như hình vẽ bên (trong đó đường cong đậm hơn là của đồ thị hàm số y=f(x). Có bao nhiêu số nguyên m để phương trình f(1-g(2x-1))=m có nghiệm thuộc đoạn - 1 ; 5 2
A. 8
B. 3
C. 6
D. 4
Cho hàm số y = f ( x ) xác định và liên tục trên ℝ , có đồ thị như hình vẽ bên. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = f ( x ) trên đoạn - 2 ; 2
.
A. m = -5, M = 0
B. m = -5, M = -1
C. m = -1, M = 0
D. m = -2, M = 2
Cho hàm số y=f(x)có đạo hàm liên tục trên ℝ , đồ thị hàm số y=f’(x) như hình vẽ bên dưới.
Cho bất phương trình f 2 x - 1 3 . 2 3 x + 2 x + 2 3 + m ≥ 0 với m là tham số thực. Tìm điều kiện cần và đủ để bất phương trình f 2 x - 1 3 . 2 3 x + 2 x + 2 3 + m ≥ 0 đúng với mọi x ∈ - 2 ; 2
A. m ≥ - f 2
B. m ≥ - f 1 - 4 3
C. m ≤ - f 4 + 50 3
D. m ≤ - f 1 2 - 9 8
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ . Hàm số y=f '(x) có đồ thị như hình vẽ bên dưới. Tìm tập hợp S tất cả các giá trị thực của tham số m để hàm số g x = 2 f 2 x + 3 f x + m có đúng 7 điểm cực trị, biết f a = 1 , f b = 0 , lim x → + ∞ f x = + ∞ , lim x → − ∞ f x = − ∞
A. S = − 5 ; 0
B. S = − 8 ; 0
C. S = − 8 ; 1 6
D. S = − 5 ; 9 8
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Đặt M = m a x ℝ f 2 sin 4 x + cos 4 x , m = m i n ℝ f 2 sin 4 x + cos 4 x . Tổng M+m bằng
A. 6.
B. 4.
C. 5.
D. 3.
Cho hàm số y=f(x) liên tục trên tập ℝ và có đồ thị (C) như hình vẽ. Có bao nhiêu giá trị nguyên dương của tham số m để phương trình f 2 x - m - 1 f x + m - 2 = 0 có 12 nghiệm phân biệt?
A. Không tồn tại m
B. 1
C. 2
D. 3
Cho hàm số y = f (x) liên tục trên ℝ và có đồ thị như hình vẽ bên.
Tập hợp tất cả các giá trị thực của tham số m để phương trình f (sinx) = m có nghiệm thuộc khoảng (0; π ) là
A. [-1;3)
B. (-1;1)
C. (-1;3)
D. [-1;1 )