Lời giải:
Nếu $(1)$ song song với $Ox$ thì $2m-3=0$
Khi đó, ptđt $(1)$ là: $y=-1$. Khoảng cách từ $O$ đến $(1)$ là: $|-1|=1$
Nếu $(1)$ song song với $Oy$ không xét, vì hệ số của $y$ khác $0$ nên $(1)$ luôn cắt $Oy$
Nếu $(1)$ cắt được cả Ox, Oy thì trước tiên $2m-3\neq 0\Leftrightarrow m\neq \frac{3}{2}$
Gọi $A, B$ là giao của $(1)$ với lần lượt trục $Ox, Oy$
$A\in Ox$ nên $y_A=0$. Ta có:
$0=y_A=(2m-3)x_A-1\Rightarrow x_A=\frac{1}{2m-3}$
$B\in Oy$ nên $x_B=0$. Ta có:
$y_B=(2m-3)x_B-1=-1$
Theo hệ thức lượng trong tam giác vuông, khoảng cách từ $O$ đến $(1)$ (gọi là $d$) thỏa mãn:
$\frac{1}{d^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$
$=(2m-3)^2+1$
Để $d_{\max}$ thì $\frac{1}{d^2}$ min hay $(2m-3)^2+1$ min
Điều này xảy ra khi $(2m-3)^2=0$ (vô lý vì $m\neq \frac{3}{2}$)
Vậy khoảng cách max là $1$ khi $m=\frac{3}{2}$