Cho hàm số y = x + 2 x + 1 có đồ thị là (C). Gọi d là khoảng cách từ giao điểm 2 tiệm cận của (C) đến một tiếp tuyến bất kỳ của (C). Giá trị lớn nhất d có thể đạt được là:
A. 3 3
B. 2 2
C. 3
D. 2
Cho hàm số y = x + 2 x + 1 ( C ) . Gọi d là khoảng cách từ giao điểm hai tiệm cận của đồ thị (C) đến một tiếp tuyến của (C). Giá trị lớn nhất d có thể đạt được là:
A. 3 3
B. 3
C. 2
D. 2 2
Cho hàm số y = x + 2 x + 1 C . Gọi d là khoảng cách từ giao điểm hai tiệm cận của đồ thị C đến một tiếp tuyến của . Giá trị lớn nhất d có thể đạt được là.
A. 3 3
B. 3
C. 2
D. 2 2
Cho hàm số y = x + 1 x - 2 C . Gọi d là khoảng cách từ giao điểm của hai đường tiệm cận của đồ thị đến một tiếp tuyến của (C). Giá trị lớn nhất mà d có thể đạt được là:
A. 3
B. 6
C. 2 2
D. 5
Gọi M là điểm có hoành độ dương thuộc đồ thị hàm số y = x + 2 x − 2 sao cho tổng khoảng cách từ M đến hai đường tiệm cận của đồ thị hàm số đạt giá trị nhỏ nhất. Tọa độ điểm M là
A. 4 ; 3
B. 0 ; − 1
C. 1 ; − 3
D. 3 ; 5
Tìm tọa độ điểm M có hoành độ dương thuộc đồ thị (C) của hàm số y = x + 2 x − 2 sao cho tổng khoảng cách từ M đến hai đường tiệm cận của đồ thị (C) đạt giá trị nhỏ nhất.
A. M(1;-3)
B. M(3;5)
C. M(0;-1)
D. M(4;3)
1. Cho hàm số y=2x-1/x-1 . Lấy M thuộc C với XM=m . tiếp tuyến của C tại M cắt 2 đường tiệm cận tại A,B . Gọi I là giao của 2 đường tiệm cận . CMR : M là trung điểm của AB và tam giác IAB có diện tích không phụ thuộc vào M
2.cho y=x+2/x-3 tìm M thuộc C sao cho khoảng cách từ M đến 2 đường tiệm cận C bằng nhau
3. cho y = x+2/x-2 tìm M thuộc C sao cho M cách đều hai trục tọa độ . viết pttt của C biết tiếp tuyến đó đi qua A(-6;5)
4 . cho y = x+1/x-1 . CMR (d) : 2x-y+m=0 luôn cắt C tại A,B trên 2 nhánh của (C) . tìm m để AB ngắn nhất
Cho hàm số y = x + 1 x − 1 có đồ thị (C) và A là điểm thuộc (C). Tính giá trị nhỏ nhất của tổng các khoảng cách từ A đến các đường tiệm cận của (C).
A. 2 3
B. 2
C. 3
D. 2 2
Cho hàm số y = x − 1 x + 1 có đồ thị (C), điểm M di động trên (C). Gọi d là tổng khoảng cách từ M đến hai trục tọa độ. Khi đó giá trị nhỏ nhất của d là
A. 207 250 .
B. 2 − 1.
C. 2 2 − 1.
D. 2 2 − 2.