Đáp án B
Cách 1: Do f x . f 1 − x = 1 nên ta chọn f x = 1 ⇒ f 1 − x = 1 ⇒ I = ∫ 0 1 d x 2 = 1 2 .
Đáp án B
Cách 1: Do f x . f 1 − x = 1 nên ta chọn f x = 1 ⇒ f 1 − x = 1 ⇒ I = ∫ 0 1 d x 2 = 1 2 .
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1], f(x) và f' (x) đều nhận giá trị dương trên đoạn [0;1] và thỏa mãn f(0)=2, ∫ 0 1 f ' ( x ) . [ f ( x ) ] 2 + 1 ] dx = 2 ∫ 0 1 f ' ( x ) . f ( x ) dx . Tính ∫ 0 1 [ f ( x ) ] 3 dx ?
A. 15/4.
B. 15/2.
C. 17/2.
D. 19/2.
Cho hàm số y=f(x) nhận giá trị không âm và liên tục trên đoạn [0;1]. Đặt g ( x ) = 1 + 2 ∫ 0 x f ( t ) d t . Biết g ( x ) ≥ [ f ( x ) ] 3 với mọi x ∈ [ 0 ; 1 ] . Tích phân ∫ 0 1 [ g ( x ) ] 2 3 d x có giá trị lớn nhất bằng
A. 5 3
B. 4.
C. 4 3
D. 5.
Cho hàm số f x liên tục và nhận giá trị dương trên [ 0 ; 1 ] . Biết f x . f 1 − x = 1 với mọi x thuộc [ 0 ; 1 ] . Tính giá trị I = ∫ 0 1 d x 1 + f x
A. 3 2
B. 1 2
C. 1
D. 2
Cho hàm số f (x) có đạo hàm cấp hai liên tục trên đoạn [0;1] thoả mãn [ f ' ( x ) ] 2 + f ( x ) f '' ( x ) ≥ 1 , ∀ x ∈ [ 0 ; 1 ] và f 2 ( 0 ) + f ( 0 ) . f ' ( 0 ) = 3 2 . Giá trị nhỏ nhất của tích phân ∫ 0 1 f 2 ( x ) d x bằng
A. 5 2
B. 1 2
C. 11 6
D. 7 2
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0;1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ] d x ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn điều kiện:
∫ 0 1 f ' x 2 d x = ∫ 0 1 x + 1 e x . f x d x = e 2 - 1 4 và f(1) = 0 Tính giá trị tích phân I = ∫ 0 1 f x d x
A. e - 1 2
B. e 2 4
C. e - 2
D. e 2
Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn điều kiện:
0 1 f ' x 2 d x = 0 1 x + 1 e x . f x d x = e 2 − 1 4 và f(1) = 0. Tính giá trị tích phân I = 0 1 f x d x .
A. e − 1 2 .
B. e 2 4 .
C. e - 2
D. e 2 .
Cho hàm số f (x) có đạo hàm cấp hai liên tục trên đoạn [0;1] thoả mãn f ' ( x ) 2 + f x f ' ' x ≥ 1 ∀ m ∈ 0 ; 1 và f 2 0 + f 0 . f ' 0 = 3 2 Giá trị nhỏ nhất của tích phân ∫ 0 1 f 2 x d x bằng
A. 5 2
B. 1 2
C. 11 6
D. 7 2
Cho hàm số f (x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;2] thoả mãn f(0)=3,f(2)=12 và ∫ 0 2 ( f ' ( x ) ) 2 f ( x ) d x = 6 . Tính f(1).
A. 27 4
B. 25 4
C. 9 2
D. 15 4