Cho hàm số y = x3 + 3x2 + 9x + 3 có đồ thị (C). Tìm giá trị thực của tham số k để tồn tại hai tiếp tuyến phân biệt với đồ thị (C) có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó với (C) cắt trục Ox, Oy lần lượt tại A và B sao cho OB = 2018OA
A. 6054
B. 6024
C. 6012
D. 6042
Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Giả sử, đường thẳng d: y=kx+m là tiếp tuyến của (C), biết rằng d cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc tọa độ O. Tổng k+m có giá trị bằng:
A. 1.
B. 3.
C. -1
D. -3
Cho hàm số y = x 3 + 6 x 2 + 9 x + 3 C . Tồn tại hai tiếp tuyến của (C) phân biệt và có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho OA=2017 Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?
A. 0
B. 1
C. 2
D. 3
Cho hàm số y = − x + 1 2 x − 1 có đồ thị là (C), đường thẳng d : y = x + m . Với mọi m ta luôn có d cắt (C) tại 2 điểm phân biệt A, B. Gọi k 1 , k 2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A, B. Tìm m để tổng k 1 + k 2 đạt giá trị lớn nhất.
A. m = -1
B. m = -2
C. m = 3
D. m = -5
Cho hàm số y = x 3 - 3 x có đồ thị (C). Gọi S là tập hợp tất cả các giá trị thực của k để đường thẳng d : y = k ( x + 1 ) + 2 cắt đồ thị (C) tại ba điểm phân biệt M, N, P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Biết M (-1;2), tính tích tất cả các phần tử của tập S
A. 1 9
B. - 2 9
C. 1 3
D. -1
Cho hàm số y = 2 x - 1 x - 1 ( C ) . Hệ số góc của tiếp tuyến với đồ thị sao cho tiếp tuyến đó cắt trục Ox , Oy lần lượt tại các điểm A , B thỏa mãn OA=4OB là:
A. - 1 4
B. 1 4
C. - 1 4 hoặc 1 4
D. 1
Cho hàm số y = - x + 1 2 x - 1 có đồ thị (C) đường thẳng A, B Với mọi m ta luôn có d cắt (C) tại 2 điểm phân biệt A, B. Gọi k 1 , k 2 là hệ số góc của các tiếp tuyến với (C) tại A, B. Tìm m để tổng k 1 + k 2 lớn nhất
A. -1
B. -2
C. 3
D. -5
Đồ thị hàm số y = a x + b x - 1 cắt trục Oy tại điểm M(0;-1), tiếp tuyến của đồ thị tại M có hệ số góc k = -3. Các giá trị của a, b là
A. a = 1; b = 1
B. a = 2; b = 1
C. a = 1; b = 2
D. a = 2; b = 2
Cho hàm số y = x 3 - 3 x có đồ thị (C). Gọi S là tập hợp tất cả các giá thực của k để đường thẳng y = k(x+1)+2 cắt đồ thị (C) tại ba điểm phân biệt M, N, P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Biết M(-1;2), tính tích tất cả các phần tử của tập S.
A. 1/9
B. -2/9
C. 1/3
D. -1.