Cho tập A = { x \(\in Z\) | x = 15k; k \(\in Z\) } và B = { \(x\in Z\) | x = 5m; m \(\in Z\) }. Khẳng định nào sau đây là đúng?
A. B \(\subset A\) B. A ko là tập con của B C. A = B D. A là tập con của B
Cho A, B là hai tập hợp, x ∈ R và x ∉ B. Xét xem trong các mệnh đề sau mệnh đề nào làm đúng
a) x ∈ A ∩ B
b) x ∈ A ∪ B
c) x ∈ A \ B
d) x ∈ B \ A
[1] Cho tập hợp E = { x ∈ R | x < -3 }.
Khẳng định nào trong các khẳng định dưới đây là đúng?
A. E = ( -3; \(+\infty\) ) B. E = [ -3; \(+\infty\) ) C. E = ( -\(\infty\); -3 ) D. E = (\(-\infty\); -3 ]
Bài 4.Tập hợp nào dưới đây là tập rỗng:
a)A={\(\varnothing\)}
b)B={x\(\in\)R|x2+1=0}
c)C={x\(\in\)R|x< -3 và x>6}
Bài 5.Tìm tất cả tập con của các tập hợp sau:
a)A={3;5;7}
b)B={a;b;c;d}
c)C={\(\varnothing\)}
d)D={x\(\in\)R|(x-1)(x2-5x+6)=0}
Bài 6. Cho các tập hợp: A={a;b;c;d}, B={a;b}. Hãy tìm tất cả các tập X sao cho: B\(\subset\)X\(\subset\)A.
Giả sử A và B là hai tập hợp, A ⊂ B và x ∈ B. Mệnh đề nào là sai trong các mệnh đề sau?
A. x ∈ A ⇒ x ∈ A ∩ B
B. x ∈ B \ A ⇒ x ∈ A
C. x ∈ A \ B ⇒ x ∈ A
D. x ∈ A \ B ⇒ x ∈ A
Cho các tập hợp A = {x ∈ R: x2 + 4 = 0}; B = {x ∈ R: (x2 - 4)(x2 + 1) = 0}; C = {-2; 2}; D = {x ∈ R: |x| < 2}. Khẳng định nào sau đây đúng?
A. A ⊂ B.
B. C ⊂ A.
C. D ⊂ B.
D. D ⊂ C.
[2] Cho hai tập hợp A = { x ∈ R | 3x -1 >= 2; 3-x > 1 }; B = [ 0; 3]. Khẳng định nào sau đay là đúng?
A. \(C_BA\) = { 0; 2; 3 } B. \(C_BA\) = [ 2; 3 ] C. \(C_BA\) = [ 0; 1 ) D. \(C_BA\) = [ 0; 1 ) ∪ [ 2; 3 ]
Cho phương trình: x(x-2)-(x+3)^2 + 1=0 Nghiệm của phương trình thỏa mãn điều kiện nào sao đây?
A. Là một số tự nhiên.
B. Là phần tử của tập hợp A = [-1;1]
C. Là phần tử của tập hợp B=[0;2]
D. Là một số thực không âm.
Cho hai tập hợp A = 1 ; 2 ; 3 và B = 1 ; 2 ; 3 ; 4 ; 5 . Có tất cả bao nhiêu tập X thỏa mãn A ⊂ X ⊂ B ?
A. 4
B. 5
C. 6
D. 8