Ta có: \(a+b=1\Rightarrow2\sqrt{ab}\le1\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)
Lại có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^2-ab+b^2=\left(a+b\right)^2-3ab\ge1-\frac{3}{4}=\frac{1}{4}\)
Dấu "=" xảy ra khi a = b = \(\frac{1}{2}\)
\(VT-VP=\frac{4\left(a+1\right)\left(b+1\right)\left(a-b\right)^2+\left(2a^2+2b^2+a+b-2\right)^2}{4\left(a+b+2\right)}\ge0\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Ngoài ra:
\(VT-VP=\frac{3}{4}\left(a-b\right)^2\left(a+b\right)\)
\(=\frac{1}{8}\left(a+1\right)\left(2a-1\right)^2+\frac{1}{8}\left(b+1\right)\left(2b-1\right)^2+\frac{3}{8}\left(a-b\right)^2\left(a+b\right)\)
.... Vô số kiểu:)))