Cho hai điểm M 1 ; 2 ; - 4 và M ' 5 ; 4 ; 2 . Biết M’ là hình chiếu vuông góc của M trên mặt phẳng α . Khi đó mặt phẳng α có một vecto pháp tuyến là
A. n ⇀ = 3 ; 3 ; - 1
B. n ⇀ = 2 ; - 1 ; 3
C. n ⇀ = 2 ; 1 ; 3
D. n ⇀ = 2 ; 3 ; 3
Gọi m, n là hai giá trị thực thỏa mãn: giao tuyến của hai mặt phẳng ( P m ): mx + 2y + nz +1 = 0 và ( Q m ) : x -my + nz + 2 = 0 vuông góc với mặt phẳng ( α ): 4x - y - 6z + 3 = 0 . Tính m + n.
A. m + n = 3
B. m + n = 2
C. m + n = 1
D. m + n = 0
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d tương ứng có phương trình là 2 x - y + 3 z - 3 = 0 và x + 1 - 2 = y - 2 1 = z + 2 - 1 . Biết đường thẳng d cắt mặt phẳng (P) tại điểm M. Gọi N là điểm thuộc d sao cho M N = 3 , gọi K là hình chiếu vuông góc của điểm N trên mặt phẳng (P). Tính độ dài đoạn MK.
A. M K = 7 105
B. M K = 7 4 21
C. M K = 4 21 7
D. M K = 105 7
Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh 2a, hình chiếu vuông góc của A lên mặt phẳng (A’B’C’) là trung điểm H của A’B’. Gọi M, N lần lượt là trung điểm của AA’, B’C’. Biết rằng AH = 2a và α là số đo của góc giữa đường thẳng MN và mặt phẳng (AC’H). Khi đó cosα bằng
A. 77 11
B. 22 11
C. 2 5 5
D. 5 5
Cho điểm M(1 ; 4 ; 2) và mặt phẳng (α): x + y + z -1 = 0.
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng (α) ;
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (α).
c) Tính khoảng cách từ điểm M đến mặt phẳng (α).
Cho điểm M(1 ; 4 ; 2) và mặt phẳng (α): x + y + z -1 = 0.
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng (α) ;
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (α).
c) Tính khoảng cách từ điểm M đến mặt phẳng (α).
Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua hai điểm A(1;-7;-8), B(2;-5;-9) sao cho khoảng cách từ điểm M(7;-1;-2) đến (P) lớn nhất có một véctơ pháp tuyến là n → =(a;b;4). Giá trị của tổng a+b là
A. -1.
B. 3
C. 6
D. 2
Trong không gian Oxyz, cho hai mặt phẳng α : x-my +z +6m+3=0 và β : mx +y -mz +3m -8= 0 (với m là tham số thực); hai mặt phẳng này cắt nhau theo giao tuyến là đuờng thẳng ∆ Gọi ∆ ' là hình chiếu của ∆ lên mặt phẳng Oxy. Biết rằng khi m thay đổi thì đường thẳng ∆ ' luôn tiếp xúc với một mặt cầu cố định có tâm I (a;b;c) thuộc mặt phẳng Oxy. Tính giá trị biểu thức P = 10 a 2 - b 2 + 3 c 2
A. P =56
B. P = 9
C. P = 41
D. P = 73
Trong không gian Oxyz, cho đường thẳng d : x - 1 2 m + 1 = y + 3 2 = z + 1 m - 2 , m ∉ - 1 2 , 2 và mặt phẳng (P): x+ y+ z−6 = 0. Gọi Δ là hình chiếu vuông góc của d lên mặt phẳng (P). Có bao nhiêu số thực m để Δ vuông góc với véctơ a → - 1 ; 0 ; 1 .
A. 2
B. 6.
C. 3.
D. 0.