a: Xét (O) có
EN là tiếp tuyến
EM là tiếp tuyến
Do đó: EN=EM
hay E nằm trên đường trực của NM(1)
Ta có: ON=OM
nên O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OE⊥MN
a: Xét (O) có
EN là tiếp tuyến
EM là tiếp tuyến
Do đó: EN=EM
hay E nằm trên đường trực của NM(1)
Ta có: ON=OM
nên O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OE⊥MN
cho đường tròn tâm o bán kính r. đường kính cd và 1 điểm m thuộc đường tròn o sao cho mc<md. kẻ mh vuông góc với cd tại h. chứng minh tam giác cmd vuông cho mc=6. md=8 tính mh. tiếp tuyến tại c của đường tròn o cắt dm tại e. goị f là trung điểm của ce. chứng minh fm là tiếp tuyến của đường tròn o. tiếp tuyến tại d của đường tròn o cắt fm tại p. chứng minh cf*dp=r^2. chứng minh cp vuông góc với oe
Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM, E là trung điểm AH.
a) Chứng minh H là trực tâm của tam giác ABC.
b) Chứng minh ME là tiếp tuyến của đường tròn (O).
c) Chứng minh MN. OE = 2ME. MO
Cho đường tròn (O; R) đường kính AB và điểm C bất kỳ thuộc đường tròn (C khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BC ở D. Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E.
1. Chứng minh bốn điểm A, E, C, O cùng thuộc một đường tròn.
2. Chứng minh BC.BD = 4R2 và OE song song với BD.
3. Đường thẳng kẻ qua O và vuông góc với BC tại N cắt tia EC ở F. Chứng minh BF là tiếp tuyến của đường tròn (O;R).
4. Gọi H là hình chiếu của C trên AB, M là giao của AC và OE. Chứng minh rằng khi điểm C di động trên đường tròn (O; R) và thỏa mãn yêu cầu đề bài thì đường tròn ngoại tiếp tam giác HMN luôn đi qua một điểm cố định.
Cho nửa đường tròn (O;R) đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm cùng phía với nửa đường tròn. M là điểm bất kỳ trên nửa đường tròn ( M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N.
a) Chứng minh AOME và BOMN là các tứ giác nội tiếp. b) Chứng minh AE. BN = R2 . c) Kẻ MH vuông góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK MN ⊥ . d) Giả sử MAB R=α và MB < MA. Tính diện tích phần tứ giác BOMH ở bên ngoài nửa đường tròn (O) theo R và α . e) Xác định vị trí của điểm M trên nửa đường tròn (O) để K nằm trên đường tròn (O) .
Cho đường tròn tâm O, đường kính BC = 2R. Lấy điểm A thuộc đường tròn sao cho AC = R . Vẽ OE vuông góc với AB tại E. Tiếp tuyến tại B của đường tròn (O) cắt đường thẳng OE tại điểm M.
1/ Chứng minh MA là tiếp tuyến của đường tròn (O).
2/ Chứng minh bốn điểm A, O, B, M cùng thuộc một đường tròn. Xác định tâm và tính bán kính của đường tròn đó theo R.
Cho đường tròn tâm O bán kính R và một điểm M sao cho OM=2R,từ M kẻ hai tiếp tuyến MA,MB của đường tròn tâm O bán kính R (A,B là tiếp điểm).
a)Chứng minh tam giác MAB đều,tính AM theo R
b)Qua điểm C thuộc ucng nhỏ AB vẽ tiếp tuyến với đường tròn tâm O bán kính R cắt MA tại E,cắt MB tại F,OF cắt AB tại K,OE cắt AB tại H.Chứng minh EK vuống góc với OF
c)Khi số đo cung BC=90 độ.Tính EF và diện tích tam giác OHK theo R
Cho đường tròn ( O ; R ), điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn ( B, C là các tiếp điểm). Kẻ đường kính BD, đường thẳng vuông góc với BD tại O cắt đường thẳng DC tại E.
a. Chứng minh : OA vuông góc với BC và DC // OA
b. Chứng minh : Tứ giác AEDO là hình bình hành.
c. Đường thẳng BC cắt OA và OE lần lượt tại I và K. Chứng minh : \(IK.IC+OI.IA=R^2\)
Cho đường tròn tâm O đường kính BC là 2R điểm A nằm trên Ô sao cho AB là R điểm E là trung điểm của AC a Chứng minh tâm giác ABC vuông và tính theo R độ dài AC b Từ C vẽ tia tiếp tuyến với Ở cắt tia OE tại F Chứng minh FA là tiếp tuyến của O Giúp mik câu b với
Bài 7: Cho đường tròn tâm O, đường kính BC = 2R. Lấy điểm A thuộc đường tròn sao cho AC = R . Vẽ OE vuông góc với AB tại E. Tiếp tuyến tại B của đường tròn (O) cắt đường thẳng OE tại điểm M. 1/ Chứng minh MA là tiếp tuyến của đường tròn (O). 2/ Chứng minh bốn điểm A, O, B, M cùng thuộc một đường tròn. Xác định tâm và tính bán kính của đường tròn đó theo R.