a: Vì I là trung điểm của AB
và AB=2R
nên I trùng với O
=>OI=0
Ta có: ΔOCD cân tại O
mà OK là đường trung tuyến
nên OK\(\perp\)CD tại K
Ta có: K là trung điểm của CD
=>\(KC=KD=\dfrac{CD}{2}=\dfrac{R\sqrt{3}}{2}\)
Ta có: ΔOKC vuông tại K
=>\(OK^2+KC^2=OC^2\)
=>\(OK^2+\left(\dfrac{R\sqrt{3}}{2}\right)^2=R^2\)
=>\(OK^2=R^2-\left(\dfrac{R\sqrt{3}}{2}\right)^2=R^2-\dfrac{3R^2}{4}=\dfrac{1}{4}\cdot R^2\)
=>OK=1/2R
b:C1: Ta có: OI=0
OK=1/2R
=>OI<OK
C2: Xét (O) có
AB là đường kính
CD là dây
=>CD<AB
Xét (O) có
CD,AB là các dây của (O)
AB>CD
OI,OK lần lượt là khoảng cách từ O xuống AB,CD
Do đó: OI<OK