a:góc ANB=1/2*180=90 độ
góc MOB+góc MNB=180 độ
=>MNBO nội tiếp
a:góc ANB=1/2*180=90 độ
góc MOB+góc MNB=180 độ
=>MNBO nội tiếp
BÀI 1 Cho đường tròn ( O) đường kính AB , vẽ bán kính OC vuông góc với AB. Từ B vẽ tiếp tuyến Bx. Gọi M là trung điểm OC , AM kéo dài cắt đường tròn tại E và Bx tại I .Tiếp tuyến từ E cắt Bx tại D. Chứng minh tứ giác MODE nội tiếp
BÀI 2: Cho đường tròn (O) đường kính AB, từ A và B vẽ Ax vuông góc với AB và By vuông góc BA ( Ax và By cùng phía so với bờ AB) .Vẽ tiếp tuyến x'My' ( tiếp điểm M ) cắt Ax tại C và By tại D; OC cắt AM tại I và OD cắt BM tại K .Chứng minh tứ giác CIKD nội tiếp
cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy một điểm M (khác 0) đường thẳng CM cắt đường tròn tâm O tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở điểm P. Chứng minh rằng:
a. Tứ giác OMNP nội tiếp được đường tròn
b. Tứ giác CMPO ngoại tiếp đường tròn
C. Tính CM, CN không phụ thuộc vào vị trí M
cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy một điểm M (khác 0) đường thẳng CM cắt đường tròn tâm O tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở điểm P. Chứng minh rằng:
a. Tứ giác OMNP nội tiếp được đường tròn
b. Tứ giác CMPO là hình bình hành
C. Tính CM, CN không phụ thuộc vào vị trí M
BÀI 1 Cho đường tròn ( O) đường kính AB , vẽ bán kính OC vuông góc với AB. Từ B vẽ tiếp tuyến Bx. Gọi M là trung điểm OC , AM kéo dài cắt đường tròn tại E và Bx tại I .Tiếp tuyến từ E cắt Bx tại D. Chứng minh tứ giác MODE nội tiếp
BÀI2: Cho đường tròn (O) đường kính AB, từ A và B vẽ Ax vuông góc với AB và By vuông góc BA ( Ax và By cùng phía so với bờ AB) .Vẽ tiếp tuyến x'My' ( tiếp điểm M ) cắt Ax tại C và By tại D; OC cắt AM tại I và OD cắt BM tại K .Chứng minh tứ giác CIKD nội tiếp
BÀI 3; Cho hình vuông ABCD, AB=10 cm. Gọi các điểm I, K lần lượt là trung điểm của AB và BC. Gọi M là giao điểm của DI và AK
a) Tính DI
b)Chứng minh rằng tứ giác IMKB nội tiếp
cho nửa đường tròn (O) đường kính AB =2R bán kính OC vuông góc với AB. M là một điểm trên cung nhỏ BC, AM cắt CO tại N 1 CM tứ giác OBMN nội tiếp 2 CM AM.AN=2R^2
Cho đường tròn tâm o bán kính AB, kẻ các tiếp tuyến Ax,By. Lấy M bất kì trên nửa đường tròn, tiếp tuyến tại M của đường tròn tâm o cắt Ax, By lần lượt tại C,D
1) Chứng minh tứ giác AOMC nội tiếp
2) Với BD= R\(\sqrt{3}\)Tính AM
3) Nối OC cắt AM tại E, OD cắt BM tại F, kẻ MN vuông góc AB (N thuộc AB). Chứng minh đường tròn ngoại tiếp tam giác NEF luôn đi qua một điểm cố định
4)Tìm vị trí điểm M trên nửa đường tròn để bán kính đường tròn ngoại tiếp tứ giác CEFD nhỏ nhất
Giúp em vs ai giúp em tick cho
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Bài 5 (3,0 điểm): Cho nửa đường tròn tâm O đường kính AB, vẽ bán kính OC vuông góc với AB. Trên cung BC lấy điểm D (D khác B và C), tia AD cắt OC tại E.
a. Chứng minh tứ giác OBDE là tứ giác nội tiếp
b. Chứng minh: AE.AD = AC
c. Kẻ El vuông góc với BC tại I. Chứng minh rằng I là tâm đường tròn ngoại tiếp tam giác CDE . Giúp mình câu c vs ạ!!!
Cho nửa đường tròn (O) đường kính AB, bán kính OC vuông góc với AB. Gọi M là điểm di động trên cung BC; AM cắt OC tại N. CMR :
a) AM.AN không đổi
b) CD vuông góc với AM,MNOB và AODC nội tiếp
c) Xác định M trên cung BC để tam giác COD cân tại D