Có hai đáp số tương ứng với hai vị trí của điểm D
*Trường hợp D nằm giữa C và B
VÌ C nằm chính giữa A và B nên :
Có hai đáp số tương ứng với hai vị trí của điểm D
*Trường hợp D nằm giữa C và B
VÌ C nằm chính giữa A và B nên :
Cho đường tròn (O; R), đường kính AB. Gọi C là điểm chính giữa của cung AB. Vẽ dây CD dài bằng R. Tính góc ở tâm DOB. Có mấy đáp số ?
Cho ( O; R) đường kính AB . Gọi C là điểm chính giữa cung AB. Vẽ dây CD= R( D thuộc cung BC nhỏ) . Tính góc ở tâm BOD
Cho đường tròn tâm o bán kính R, đường kính MN. Gọi P là điểm chính giữa của cũng MN, vẽ dây PQ = R. Tính số đo góc tâm NOQ Q € cung nhỏ NP
Cho (O;R) AB là đường kính, C là điểm nằm chính giữa của cung AB, vẽ dây CD=R. Tính sđ cung BD
Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. Gọi E và F tương ứng là giao điểm của MC, MD với dây AB. Gọi I và J tương ứng là giao điểm của DE, CF với đường tròn (O). Chứng minh IJ song song với AB.
Cho đường tròn tâm O bán kính R đường kính MN. Vẽ dây cung AB =R; MA và NB kéo dài cắt nhau tại E a) Tính số đo cung AB nhỏ và số đo của góc MEN b) Gọi H là giao điểm của MB và NA. Chứng minh tứ giác EAHB nội tiếp c) Chứng minh MH.MB+NH.NA = 4R bình phương
Cho đường tròn tâm O đường kính AB=2R. Vẽ dây cung CD vuông góc với AB tại I(I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC(E khác B và C), AE cắt CD tại F
a) Chứng minh tứ giác BEFL nội tiếp trong một đường tròn
b) Tính độ dài cạnh AC theo R và góc ACD khi góc BAC=60độ
c) Chứng minh khi điểm E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp tam giác CEF luôn thuộc một đường thẳng cố định
Cho đường tròn tâm O bán kính R và dây AB bất kỳ. Gọi M là điểm chính giữa của cung nhỏ AB. E và F là hai điểm bất kỳ trên dây AB. Gọi C và D tương ứng là giao điểm của ME, MF của đường tròn (O). Chứng minh ∠ EFD + ∠ ECD = 180 °
Cho đường tròn (O) đường kính AB. Vẽ dây CD không qua tâm vuông góc với AB tại I (A thuộc cung nhỏ CD) biết CD=16cm ; IA=6cm. Tính bán kính của (O;R)