Câu 10:
Cho đường tròn (O;5cm),AB là 1 đường kính bất kỳ của đường tròn, lấy C là 1 điểm bất kỳ
trên đường tròn sao cho góc BOC = 60 độ Khi đó BC có độ dài là ....?
Cho đường tròn (O;5cm),AB là 1 đường kính bất kỳ của đường tròn, lấy C là 1 điểm bất kỳ
trên đường tròn sao cho BOC=60 độ.Khi đó BC có độ dài là ?
Cho đường tròn (O;5cm),AB là 1 đường kính bất kỳ của đường tròn, lấy C là 1 điểm bất kỳ
trên đường tròn sao cho BOC=60 độ.Khi đó BC có độ dài là ?
Cho đường tròn (O;3),dây HK=4,8.Đường thẳng qua O và vuông góc với HK
cắt tiếp tuyến của (O) tại K ở P.Độ dài của HP =?
Nếu 2 đường thẳng y=2x+3+m và y=x+6-m cắt nhau tại một điểm trên trục tung khi đó m=?
Cho tam giác ABC có 3 độ dài cạnh AB,AC,BC lần lượt là 6;8;10 nội tiếp đường tròn tâm (O), M là điểm chính giữa của cung AC nhỏ và I là giao điểm của OM và AC.Độ dài đoạn IO = ?
Cho (O;5cm)vẽ đường kính AB và lấy điểm M thuộc AB sao cho AM = 2cmvẽ dây CD vuông góc với AB tại M.
Diện tích tứ giác ACBD =?
Cho đường tròn (O;5cm),AB là 1 đường kính bất kỳ của đường tròn, lấy C là 1 điểm bất kỳ
trên đường tròn sao cho BOC=60 độ.Khi đó BC có độ dài là ?
Mọi người giải hộ mình nha. Thanks nhiều!
Bài 4(3 điểm). Cho đường tròn (O; R), đường kính AB. Lấy điểm C bất kỳ trên đường tròn (O; R) (C không trùng A; AC < BC). Qua C kẻ dây CD của đường tròn (O; R) vuông góc với đường kính AB tại I. Lấy điểm E sao cho I là trung điểm AE. Tia DE cắt đoạn thẳng BC tại F. Gọi K là trung điểm của BE. 1) Chứng minh tam giác BCD cân. 2) Chứng minh AC I/ DE và chứng minh F thuộc đường tròn tâm K đường kính BE. 3) Chứng minh IF là tiếp tuyến của đường tròn tâm K đường kính BE. 4) Lấy điểm M trên đoạn thẳng OC sao cho OM = CI. Chứng minh khi điểm C di chuyển trên nửa đường tròn (O; R) không chứa điểm D (C khác A, B) thì điểm M chạy trên một đường tròn cố định.
Cho nửa đường tròn (O), đường kính AB. Trên một nửa mặt phẳng bờ AB có chứa nửa
đường tròn, vẽ các tia tiếp tuyến Ax, By với đường tròn (O). Gọi H là một điểm bất kỳ
trên nửa đường tròn (H không trùng A và B). Tiếp tuyến của đường tròn tại H lần lượt
cắt Ax và By tại C và D.
a) Chứng minh AC + BD = CD
b) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp tam giác COD.
c) Tìm vị trí của điểm H trên nửa đường tròn sao cho diện tích tứ giác
ACDB nhỏ nhất
Cho đường tròn tâm O bán kính R. Lấy 3 điểm A, B, C trên đường tròn đó sao cho AB = BC = CA. Gọi I là điểm bất kỳ của cung nhỏ BC (và I không trùng với B, C). Gọi M là giao điểm của CI và AB. Gọi N là giao điểm của BI và AC. Chứng minh: ∠ ANB = ∠ BCI
Cho đường tròn tâm O bán kính R. Lấy 3 điểm A, B, C trên đường tròn đó sao cho AB = BC = CA. Gọi I là điểm bất kỳ của cung nhỏ BC (và I không trùng với B, C). Gọi M là giao điểm của CI và AB. Gọi N là giao điểm của BI và AC. Chứng minh: ∠ AMC = ∠ CBI
cho điểm A thuộc đường thẳng a. trên đường thẳng vuông góc với a tại A, lấy diểm O sao cho OA= 5cm. Vẽ đường tròn (O;3cm). M là điểm bất kỳ trên a, vẽ tiếp tuyến MB với đường tròn (O) (B là tiếp điểm). Vẽ dây BC của đường tròn (O) vuông góc với OM, cắt OM tại N.
a) đường thẳng a có vị trí như thế nào với đường tròn (O)? vì sao?
b) cm MC là tiếp tuyến của đường tròn (O).
c) cm bốn điểm A,B,O,M cùng thuộc một đường tròn.
d) cm BC.OM=2BO.MB. tính BC nếu góc BOC=100 độ (làm chòn đến chữ số thập phân thứ nhất)
e) cmr khi M di chuyển trên a thì điểm N luôn thuộc một đường cố định.
câu e ạ