Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Văn Hiêu

Cho nửa đường tròn (O), đường kính AB. Trên một nửa mặt phẳng bờ AB có chứa nửa
đường tròn, vẽ các tia tiếp tuyến Ax, By với đường tròn (O). Gọi H là một điểm bất kỳ
trên nửa đường tròn (H không trùng A và B). Tiếp tuyến của đường tròn tại H lần lượt
cắt Ax và By tại C và D.
a)  Chứng minh AC + BD = CD
b)  Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp tam giác COD.
c)  Tìm vị trí của điểm H trên nửa đường tròn sao cho diện tích tứ giác
ACDB nhỏ nhất

Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 9:04

a, Theo tính chất 2 tt cắt nhau: \(AC=CH;BD=DH\Rightarrow AC+BH=CH+HD=CD\)

b, Vì \(AC=CH;CO.chung;\widehat{CAO}=\widehat{CHO}=90^0\) nên \(\Delta CAO=\Delta CHO\left(cgv-ch\right)\)

Do đó \(\widehat{AOC}=\widehat{COH}\) hay OC là p/g \(\widehat{AOH}\)

Tương tự: \(\widehat{BOD}=\widehat{DOH}\) hay OD là p/g \(\widehat{HOB}\)

\(\Rightarrow\widehat{COD}=\widehat{COH}+\widehat{HOD}=\dfrac{1}{2}\left(\widehat{AOH}+\widehat{HOB}\right)=90^0\\ \Rightarrow\Delta OCD\perp O\)

Do đó OCD nội tiếp đường tròn tâm là trung điểm CD

Gọi I là trung điểm CD

Xét hthang ABDC(AC//BD) có O là trung điểm AB, I là trung điểm CD nên OI là đtb ht ABDC

\(\Rightarrow OI//AC\\ \Rightarrow OI\perp AB\)

Vậy AB là tt đường tròn nt tg OCD


Các câu hỏi tương tự
Hoa Nguyễn
Xem chi tiết
ngôn an
Xem chi tiết
Lê Đỗ Hồng Ngọc
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
NGUYỄN THÙY LINH
Xem chi tiết
Tiểu Đào
Xem chi tiết