a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm).
1) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R (1đ)
2) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Chứng minh AC là tiếp tuyến của đường tròn (O). (1đ)
3) Chứng minh tam giác ABC đều. (1đ)
4) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. Chứng minh ba điểm A, E, F thẳng hàng. (0.5đ)
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
2)Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), đường trung tuyến AM. Lấy điểm D trên cung BC không chứa A sao cho góc BAD= góc CAM. Chứng minh góc ADB= góc CDM
3)Cho tam giác ABC nội tiếp đường tròn O tại D. Đường tròn (D;DB) cắt đường thẳng AB tại Q (khác B), cắt đuòng thẳng AC tại P (khác C). Chứng minh rằng AO vuông góc PQ
Các bạn giúp mình nhé để mình làm cho xong bài tập kẻo xuân này con không về
Cho đường tròn tâm O đường kính AD. Vẽ dây BC vuông góc với AD. Vẽ đường tròn tâm D bán kính DB. Lấy điểm F trên cung BC. Tiếp tuyến tại F của đường tròn tâm D cắt AB, AC theo thứ tứ tại M và N.
a) Chứng minh rằng tứ giác ABDC nội tiếp
b) Chứng minh rằng BM + CN = MN
cho nửa đường tròn tâm O đường kính AB đường thẳng với AB tại O cắt nửa đường tròn tại C.kẻ tiếp tuyến Bt với nửa đường tròn,AC cắt tiếp tuyến tại I.
a) chứng minh rằng tam giác ABI vuông cân.
b) lấy D là một điểm trên cung BC,gọi J là giao điểm của AD với tiếp tuyến Bt.chứng minh rằng tứ giác JDCI nội tiếp đường tròn.
c) chứng minh rằng AC.AI=AD.AJ
d) tiếp tuyến tại D của đường tròn cắt Bt tại K, hạ DH vuông góc với AB . chứng minh AK đi qua trung điểm của DH.
LÀM GIÚP MK Ý d NHA MN...
Cho tam giác ABC vuông tại A (AB < AC) nội tiếp trong đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng: HA là tiếp tuyến của đường tròn (O)
Cho đường tròn (O;R) và 1 điểm M cách O một khoảng bằng 2R. Vẽ các tiếp tuyến MA; MB với đường tròn tâm O (B; A là các tiếp điểm).
a, Chứng minh rằng: Góc AMO = 300 và tính AM theo R
b, Chứng minh tam giác ABM đều và tính chu vi tam giác ABM theo R
c, Đường thẳng vuông góc với OB tại O cắt AM tại D. Đường thẳng vuông góc với OA tại O cắt MB tại E. Chứng minh rằng Tứ giác MDOE là hình thoi
d, Chứng minh đường thẳng DE là tiếp tuyến của (O;R)
Cho đường tròn (o) đường kính AB. vẽ dây DE vuông góc OA tại I (I khác O, A)
a. chứng minh tam giác ABD vuông
b. tiếp tuyến với (O) cắt đường kính AB tại M. Chứng minh ME là tiếp tuyến (o)
c. chứng minh MA.MB=MI.MO
Đường tròn tâm O, bán kính R, đường kính AB. M là một điểm nằm giữa O và B, đường thẳng kẻ qua trung điểm E của AM vuông góc với AB cắt đường tròn O tại C và D.
a) Chứng minh ACMD là hình thoi
b) Kẻ tiếp tuyến của đường tròn O tại C, tiếp tuyến này cắt O tại E. Chứng minh rằng AD là tiếp tuyến của đường tròn O
Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm.
1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE.
2. Chứng minh rằng tam giác ADE đều.
3. Vẽ DH vuông góc với CE với H thuộc CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại
điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: AQ . AM = 3R^2
4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ.