Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
DUTREND123456789

Cho đường tròn (O) đường kính AB , điểm C nằm giữa A và O . Vẽ đường tròn (I) có đường kính CB

a) Xét vị trí tương đối của 2 đường tròn (O) và (I)

b) Kẻ dây DE của đường tròn (O) vuông góc với AC tại trung điểm H của AC . Tứ giác ADCE là hình gì ? Vì sao ?

c) Gọi K là giao điểm của DB là đường tròn (I) . Chứng minh rằng 3 điểm E,C,K thẳng hàng

d) Chứng minh rằng HK là tiếp tuyến của đường tròn (I)

*******BÀI NÀY VẼ HÌNH HƠI KHÓ NÊN CẦN CẢ HÌNH********

Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 23:14

a: OI+IB=OB

=>OI=OB-IB

=>\(OI=R-r\)

=>Hai đường tròn (O) và (I) tiếp xúc trong với nhau tại B

b: Ta có: ΔODE cân tại O

mà OH là đường cao

nên H là trung điểm của DE

Xét tứ giác ADCE có

H là trung điểm chung của AC và DE

=>ADCE là hình bình hành

Hình bình hành ADCE có AC\(\perp\)DE

nên ADCE là hình thoi

c: Xét (I) có

ΔCKB nội tiếp

CB là đường kính

Do đó: ΔCKB vuông tại K

=>CK\(\perp\)KB tại K

=>CK\(\perp\)DB tại K

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>AE\(\perp\)BE tại E

Ta có: ADCE là hình thoi

=>AE//CD

mà AE\(\perp\)EB

nên CD\(\perp\)EB

Xét ΔDEB có

BH,DC là các đường cao

BH cắt DC tại C

Do đó: C là trực tâm của ΔDEB

=>EC\(\perp\)DB

mà CK\(\perp\)DB

và EC,CK có điểm chung là C

nên E,C,K thẳng hàng

d:

Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

Xét tứ giác DHCK có \(\widehat{DHC}+\widehat{DKC}=90^0+90^0=180^0\)

nên DHCK là tứ giác nội tiếp

=>\(\widehat{HKC}=\widehat{HDC}\)

mà \(\widehat{HDC}=\widehat{ADH}\)(DH là phân giác của góc ADC do ADCE là hình thoi)

nên \(\widehat{HKC}=\widehat{ADH}\)

mà \(\widehat{ADH}=\widehat{ABD}\left(=90^0-\widehat{DAB}\right)\)

nên \(\widehat{HKC}=\widehat{ABD}\)

Ta có: IC=IK

=>ΔICK cân tại I

=>\(\widehat{ICK}=\widehat{IKC}\)

\(\widehat{HKI}=\widehat{HKC}+\widehat{IKC}\)

\(=\widehat{ABD}+\widehat{ICK}\)

\(=\widehat{KBC}+\widehat{KCB}=90^0\)

=>HK\(\perp\)KI tại K

=>HK là tiếp tuyến tại K của (I)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
nguyễn quỳnh chi
Xem chi tiết
Ngô Quang Huy
Xem chi tiết
Thuận Phạm
Xem chi tiết
Hoàng Nữ Minh Thu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Tuyen Huynh
Xem chi tiết
︵✿๖ۣۜTổng tài Lin_Chan...
Xem chi tiết