1 khi △ > 0 thì (d) cắt (p) tại 2 điểm phân biệt.
2 khi △ < 0 thì (d) không cắt (p)
3 khi △ = 0 thì (d) tiếp xúc (p)
1 khi △ > 0 thì (d) cắt (p) tại 2 điểm phân biệt.
2 khi △ < 0 thì (d) không cắt (p)
3 khi △ = 0 thì (d) tiếp xúc (p)
Cho Parabol (P) y=ax^2( a khác 0) và đường thẳng (d) y=2x-4
a. xác định a để đường thẳng (d) tiếp xúc với đường cong (P), tìm tọa độ tiếp điểm M
b. vẽ đồ thị hàm số (P) với a vừa tìm được
c. đường thẳng (d) cắt Oy tại A, tính diện tích tam giác AOM
Cho parabol y = x² (P) và đường thẳng y = mx + n (d)
a) Tìm m và n để (d) tiếp xúc (P) tại điểm có hoành độ bằng 1.
b) Lập phương trình đường thẳng song song với đường thẳng tìm được ở câu a và cắt (P) tại hai điểm phân biệt, trong đó có một điểm có hoành độ bằng 2.
Cho parabol (P): y = x2 và đường thẳng d: y = mx + m +1 (với m là tham số) trong mặt phẳng tọa độ Oxy.
a) Với giá trị nào của m thì d tiếp xúc với (P)? Khi đó hãy tìm tọa độ tiếp điểm.
b) Tìm các giá trị của m để d cắt (P) tại hai điểm phân biệt nằm khác phía đối với trục tung, có hoành độ x1, x2 thỏa mãn điều kiện: 2x1 - 3x2 = 5.
Đường thẳng d: y = mx + n và parabol (P): y = a x 2 ( a ≠ 0 ) tiếp xúc với nhau khi phương trình a x 2 = m x + n có:
A. Hai nghiệm phân biệt
B. Nghiệm kép
C. Vô nghiệm
D. Có hai nghiệm âm
Cho Parabol :y=x2 và đường thẳng d :y=mx+2
1)Tìm điểm cố định của đường thẳng (d)
2)Chứng minh rằng đường thẳng d và parabol luôn cắt nhau tại hai điểm phân biệt A và B nằm khác phía trục tung
Khi vẽ đường thẳng (d):y=-x+6 và Parabol(P):y=x2 trên cùng một mặt phẳng tọa độ thì (d) và (P):
A.Tiếp xúc nhau B.Cắt nhau tại hai điểm phân biệt
C.Không cắt nhau D.Một kết quả khác
Đường thẳng d: y = mx + n và parabol (P): y = a . x 2 (a ≠ 0) tiếp xúc với nhau khi phương trình a x 2 = m . x + n có.
A. Hai nghiệm phân biệt
B. Nghiệm kép
C. Vô nghiệm
D. Có hai nghiệm âm
Cho parabol \(y=\frac{1}{2}x^2\) và đường thẳng (d) y = mx + n. Xác định các hệ số m và n để đường thẳng d đi qua điểm A(1; 0) và tiếp xúc với Parabol. Tìm tọa độ của tiếp điểm?
Cho parabol (P): y = 𝑥^2 và đường thẳng (d): y = mx − m + 1. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt nằm ở hai phía trục tung.
Cho 2 hàm số:
(P):y=x2
(D):y=2x+m
với giá trị nào của m thì đường thẳng(D)
a)không cắt pa-ra-bol
b)tiếp xúc với pa-ra-bol(P)?tìm tọa độ tiếp điểm?
c)cắt pa-ra-bol(P) tại 2 điểm phân biệt