Cho (P): y=\(x^2\) và đường thẳng (d): y=2mx-\(m^2\)+4
Gọi x1,x2 là hoành độ giao điểm của (d) và (P). Tìm giá trị của m để x1,x2 thỏa mãn \(\dfrac{1}{x_{1}}+\dfrac{3}{x_{2}}=1\)
Trong mặt phẳng Oxy,đường thẳng (d) có phương trình:(m-4)x+(m-3)y=1(m là tham số) .Khoảng cách từ gốc tọa độ đến đường thẳng (d) là lớn nhất khi giá trị m bằng
A.1 B.\(\dfrac{1}{3}\) C.\(\dfrac{7}{2}\) D.\(\dfrac{5}{2}\)
Trong mặt phẳng Oxy,đường thẳng (d) có phương trình:(m-4)x+(m-3)y=1(m là tham số).Khoảng cách từ gốc tọa độ đến đường thẳng (d) là lớn nhất khi giá trị m bằng
A.1 B.\(\dfrac{1}{3}\) C.\(\dfrac{7}{2}\) D.\(\dfrac{5}{2}\)
Trong mặt phẳng Oxy,đường thẳng (d) có phương trình:(m-4)x+(m-3)y=1(m là tham số).Khoảng cách từ gốc tọa độ đến đường thẳng (d) là lớn nhất khi giá trị m bằng
A.1 B.\(\dfrac{1}{3}\) C.\(\dfrac{7}{2}\) D.\(\dfrac{5}{2}\)
1)cho hàm số y=2mx-m2+4 có đồ thị là đường thẳng d1 (m là tham số, m khác 0)
a)tìm tất cả các giá trị của m để khoảng cách từ gốc tọa độ O đến d1 bằng \(\frac{3\sqrt{5}}{5}\)
b)tìm tất cả giá trị của m đường thẳng d1 song song với đường thẳng d2 có phương trình y=-x+2. tính khoảng cách giữa 3 đường thẳng đó
2) cho a,b,c là 3 số thực thỏa mãn a+b+c+ab+bc+ca+abc=0
cmr S=\(\frac{1}{3+2a+b+ab}\)+\(\frac{1}{3+2b+c+bc}+\frac{1}{3+2c+a+ac}\)=1
1/ Cho đường thẳng (d): y=2x+m+1. Tìm các giá trị của m để đường thẳng (d) cắt trục tung và trục hoành tại A và B sao cho diện tích tam giác OAB bằng 9 (đvdt).
2/ Cho parabol (P): y=x^2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
3/ Cho đường thẳng d: (m+1)x + (m-3)y=1
a/ Chứng minh đường thẳng d luôn đi qua một điểm với mọi m và tìm điểm cố định đó.
b/ Gọi h là khoảng cách từ O đến đường thẳng d. Tìm các giá trị của m để h lớn nhất.
cho hàm số y=2mx-m2+4 có đồ thị là đường thẳng d1 (m là tham số, m khác 0)
a) tìm tất cả các giá trị của m để khoảng cách từ gốc tọa độ O đến đường thẳng d1 bằng\(\frac{3\sqrt{5}}{5}\)
b) tìm tất cả các giá trị của m đường thẳng d1 song song vs d2 có phương trình là y=-x+2. hãy tính khoảng cách giữa 2 đường thẳng
Cho đường thẳng (d): (y=(2m+1)x-2) với m là tham số và (m\ne-\frac{1}{2}.) Khoảng cách từ (A(-2;1)) đến đường thẳng d được tính theo công thức:
[\sqrt{(-2-(2m+1)(-2))^2+(1-(2m+1)(-2))^2}]
[\sqrt{(16m^2+20m+4)^2+(24m+4)^2}]
[\sqrt{256m^4+640m^3+320m^2+576m^2+960m+16}]
[\sqrt{256m^4+1216m^3+1536m^2+960m+16}]
[\sqrt{16m^2(16m^2+79m+96)+4(16m^2+79m+96)}]
[\sqrt{(4m+7)^2(4m+16)}]
Theo đề bài, khoảng cách này bằng (\frac{1}{\sqrt{2}}.) Do đó, ta có phương trình:
[\sqrt{(4m+7)^2(4m+16)}=\frac{1}{\sqrt{2}}]
Từ đây, ta được phương trình bậc hai:
[(4m+7)^2(4m+16)=1 ]
Giải phương trình này, ta được hai nghiệm:
[m=-\frac{3}{2}\pm\frac{\sqrt{3}}{2} ]
Do (m\ne-\frac{1}{2},) ta có nghiệm duy nhất là:
[m=-\frac{3}{2}+\frac{\sqrt{3}}{2}=\frac{5}{7} ]
Vậy, tổng các giá trị của m thỏa mãn bài toán là [\frac{5}{7}.]
1) Với x > 0, giá trị nhỏ nhất của biểu thức M = 9x2 + 3x + 1/x + 1420 là:
2)Tổng các nghịch đảo của các nghiệm của phương trình \(25\sqrt{25x+4}+4=x^2\)
3)Tập hợp các giá trị của m để khoảng cách từ gốc tọa độ đến đường thẳng (d): y = (m - 1)x + 1 bằng 1/√5 là