Ta có: Ax⊥AB
By⊥AB
Do đó: Ax//By
Ta có: Ax⊥AB
By⊥AB
Do đó: Ax//By
Cho nửa đường tròn tâm O, đường kính AB. Kẻ hai tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi C là một điểm trên tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm), CM cắt By ở D.
a) Tính số đo góc COD.
b) Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB. Tứ giác OIMK là hình gì? Vì sao?
c) Chứng minh tích AC.BD không đổi khi C di chuyển trên Ax.
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
MN giúp bé bài này với :(((
Cho nửa đường tròn (O) đường kính AB. Gọi Ax; By là các tia vuông góc với AB.(Ax ; By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB).Qua điểm M thuộc nửa đường tròn ( M khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax tại C và cắt By tại D
A) c/m CD=AC+BD và COD = 90
B) AD cắt BC tại N. Chứng minh: MN//BD
C) Gọi H là trung điểm của AM. Chứng minh: ba điểm O, H , C thẳng hàng
giúp tớ câu b và c thôi ạ
Cho nửa đường tròn O đường kính AB . Gọi Ax, By là các tia vuông góc với AB Ax,By và nửa đường tròn cùng một nửa mặt phẳng bờ AB . Qua điểmM thuộc nửa dường tròn M khác A,B , kẻ tiếp tuyến của đường tròn đó,nó cắt Ax tại C và cắt By tại D a) CM: CD=AC+BD và góc COD= 90° b) AD cắt BC tại N. CM: MN//BD c) Tích AC.BD không đổi khi điểm M di chuyển trên nữa đường tròn d) Gọi H là trung điểm của AM. CM: ba điểm O, H, C thẳng hàng
Giải giúp mình vs mn
Cho nửa đường tròn tâm O có đường kính AB . Gọi Ax , By là hai tiếp tuyến vẽ từ A đến B ( Ax , By và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB) . Qua điểm thuộc nửa đường tròn ( M khác A và B ) kẻ tiếp tuyến thứ ba , tiếp tuyến này cắt Ax và By lần lượt tại điểm C và D 1. Chứng minh CD=AC+BD.
2. Gọi N là giao điểm của AD và BC chứng minh MN song song với AC.
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N. Chứng minh rằng AM.BN = R 2 (R là bán kính của nửa đường tròn)
3/ Cho nửa đường tròn tâm O có đường kính AB. Gọi Ax và By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm K thuộc nửa đường tròn (K khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự ở E và F.
a) Chứng minh: Góc EOF=90 độ
b) Chứng minh: EF = AE + BF
c) cm: OK bình =AE.BF
Bài 5. Cho nửa đường tròn (O) đường kính AB. Gọi Ax; By là các tia vuông góc với AB.(Ax ; By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB).Qua điểm M thuộc nửa đường tròn ( M khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax tại C và cắt By tại D.
a) Chứng minh
và
b) AD cắt BC tại N. Chứng minh:
c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn.
d) Gọi H là trung điểm của AM. Chứng minh: ba điểm O, H , C thẳng hàng.
Thu gọn
Bài 5. Cho nửa đường tròn (O) đường kính AB. Gọi Ax; By là các tia vuông góc với AB.(Ax ; By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB).Qua điểm M thuộc nửa đường tròn ( M khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax tại C và cắt By tại D.
a) Chứng minh và
b) AD cắt BC tại N. Chứng minh:
c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn.
d) Gọi H là trung điểm của AM. Chứng minh: ba điểm O, H , C thẳng hàng.
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi C là 1 điểm bất kì trên nửa đường tròn ( C khác A,B ). qua C kẻ tiếp tuyến với nửa đường tròn cắt Ax, By tại M,N a. Tính MON b. Chứng minh rằng MN = AM + BN c. Chứng minh rằng AM.BN = R2