a: Xét ΔANB và ΔANC có
AN chung
NB=NC
AB=AC
Do đó: ΔANB=ΔANC
a: Xét ΔANB và ΔANC có
AN chung
NB=NC
AB=AC
Do đó: ΔANB=ΔANC
Cho đoạn thẳng BC, gọi N là trung điểm của BC. Trên đường trung trực của đoạn thẳng BC lấy điểm A ( A khác N ).
a)Chứng minh rằng tam giác ANB = tam giác ANC.
b)Trên tia đối tia NA lấy điểm M sao cho NM=NA. Chứng minh AB//MC.
c)Biết AB=10cm,BN=6cm. Tính chu vi tam giác ABC.
Cho tam giác nhọn ABC có M là trung điểm của đoạn thẳng AC . Trên tia đối của tia MB lấy D sao cho MB = MD
a, Chứng minh tam giác ABM = tam giác CDM
b, Chứng minh : AB song song với CD
c, Gọi N là trung điểm của đoạn thẳng BC , đường thẳng MN cắt AD tại E . Chứng minh E là trung điểm của đoạn thẳng AD
Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB=AC. Gọi M là trung điểm của đoạn thẳng BC và E là trung điểm của đoạn thẳng AC, trên tia đối của tia EM lấy điểm H sao cho EH=EM.
a) Chứng minh tam giác ABM = tam giác ACM.
b) Chứng minh tam giác AEH = tam giác CEM.
c) Gọi D là trung điểm của đoạn thẳng AB. Từ B vẽ đường thẳng song song với đường thẳng AM, đường thẳng này cắt tia MD tại K.
Chứng minh 3 điểm H, A, K thẳng hàng.
Cho tam giác ABC. Trên tia đối của tia BC lấy M sao cho BM = BA. Trên tia đối tia CB lấy N sao cho CN = CA. Qua M kẻ đường thẳng song song với AB, qua N kẻ đường thẳng song song với AC, chúng cắt nhau tại P.
a) Chứng minh MA là tia phân giác của P M B ^ , NA là tia phân giác của P N C ^ .
b) Chứng minh PA là tia phân giác của M N P ^ .
c) Gọi D là trung điểm AM, E là trung điểm AN, các đường thẳng BD, CE cắt nhau tại Q. Chứng minh QM = QN.
d) Chứng minh ba điểm P, A, Q thẳng hàng.
Cho tam giavs ABC. Gọi E,F lần lượt là trung điểm các cạnh AB,AC. Trên tia đối của tia FB lấy điểm N sao cho FN=FB. Trên tia đối của tia EC lấy điểm M sao cho EM=MC. Chứng minh:
a)tam giác AEM=tam giác BEC
b)AM=BC và AM song song BC
c)A,M,N thảng hàng
d)A là trung điểm của đoạn thẳng MN
cho tam giác ABC.Gọi N là trung điểm của BC. Trên tia đối NA lấy điểm E sao cho NE=NA.
a/ Chứng minh rằng : AC song song BE
b/ Gọi Q là điểm trên tia AC , P là điểm trên tia BE sao cho AQ=EP. Chứng minh Q, N,P thẳng hàng
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm M sao cho BC = BM. Trên ta đối của tia BA lấy điểm N sao cho BA = BN.
a) chứng minh tam giác BAC = tam giác BNM
b) Chứng minh MN//AC
c) Gọi K là trung điểm của đoạn thẳng AC. Đường thẳng BK cắt đoạn thẳng MN tại Q. Chứng minh QM = QN
Cho tam giác ABC, trên tia đối của tia BC lấy điểm M sao cho MB = AB, trên tia đối của tia CB lấy điểm N sao cho NC = AC. Qua M kẻ đường thẳng song song với AB. Qua N kẻ đường thẳng song song với AC. Hai đường thẳng đó cắt nhau tại P. Chứng minh:
a) MA, NA lần lượt là tia phân giác của P M B ^ , P N C ^
b) Tia PA cắt BC tại K. Chứng minh PA là tia phân giác của M P N ^ , từ đó suy ra AK là tia phân giác của B A C ^