Vì O là trung điểm của AB
nên OA=OB=AB/2
Vì OA và OB là hai tia đối nhau
và OA=OB
nên \(\overrightarrow{OA}=-\overrightarrow{OB}\)
=>\(\overrightarrow{AO}=\overrightarrow{OB}\)
Vì O là trung điểm của AB
nên OA=OB=AB/2
Vì OA và OB là hai tia đối nhau
và OA=OB
nên \(\overrightarrow{OA}=-\overrightarrow{OB}\)
=>\(\overrightarrow{AO}=\overrightarrow{OB}\)
Cho tứ giác ABCD, I và J là trung điểm của AB và CD,O là trung điểm I. M là điểm bất kỳ.Chứng minh: a) vecto OA + vecto OB + vecto OC + vecto OD = vecto O b) vecto MA + vecto MB + vecto MC + vecto MD = 4MO c) vecto AC + vecto BD = vecto 2IJ
cho 2 vecto a và vecto b, từ điểm O bất kì ta dựng vecto OA bằng vecto a, vecto AB bằng vecto b. Vecto OB được gọi là tổng của 2 vecto a và vecto b, kí hiệu là gì? help gấp lắm
to tứ giác ABCD gọi M, N lần lượt là trung điểm của AB , CD . Trên đoạn thẳng MN lấy 2 điểm của O , I sao cho vecto MO = vecto OI = vecto IN . Tính tổng vecto OA + vecto IB + vecto IC + vecto OD
Cho tứ giác ABCD. Gọi I, J lần lượt là trung điểm của AB và CD, O là trung điểm của IJ . Tính vecto tổng O A → + O B → + O C → + O D →
A. vecto AD
B. Vecto BC
C. Vecto DI
D. Vecto 0
Cho tam giác ABC. A' đối xứng với B qua A, B' đối xứng với C qua B. C' đối xứng với A qua C. Chứng minh vecto OA+ vecto OB+ vecto OC= vecto OA'+ vecto OB'+ vecto OC'
Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm của BC, AC, AB. D là trung điểm của AM. Chứng minh rằng:
a, vecto AB+ vecto AC+ vecto MN+ vecto MP = vecto 0
b, vecto NB+ vecto NC - 2.vecto AN= 4.vecto ND
Cho tam giác ABC. Gọi A’,B’, C’ lần lượt là trung điểm của BC, CA, AB. a) Chứng minh vecto AA’+ vecto BB’+ vecto CC’ = vecto 0 b) Đặt vecto BB’ = vecto u, CC’ = v. Tính vecto BC, CA, AB theo vecto u và v
cho hình bình hành ABCD tâm O, M là trung điểm OB
a, chứng minh vecto AB- vecto DA +vecto CD=vecto AD
b, điểm N thuộc BC thỏa mãn vecto BN=k vectoBC , tìm k để A,M,N thẳng hàng
cho tam giác ABC , I và J lần lượt là trung điểm của AB và AC . chứng minh rằng vecto IJ=1/2 vecto BC
Cho tam giác ABC . Gọi M , N , P là 3 điểm thoả mãn vecto MC = 1/3 vecto MB , vecto NA + 3 vecto NC = 0 , vecto PA + vecto PB = 0 a ) Biểu diễn vecto MP , vecto NP theo hai vecto AB và AC b ) Chứng minh 3 điểm M , N, P thẳng hàng