Cho đồ thị hàm số y = − x 3 + 3 m x + 1 có hai điểm cực trị A, B thỏa mãn tam giác OAB vuông tạo O (O là gốc tọa độ). Khẳng định nào dưới đây là đúng?
A. − 1 < m < 1 3
B. 1 < m < 3
C. − 1 2 < m < 1
D. − 2 < m < 0
Gọi m là số thực dương sao cho đường thẳng y = m + 1 cắt đồ thị hàm số y = x 4 − 3 x 2 − 2 tại hai điểm A, B thỏa mãn tam giác OAB vuông tại O (O là gốc tọa độ). Kết luận nào sau đây là đúng?
A. m ∈ 7 9 ; 9 4
B. m ∈ 1 2 ; 3 4
C. m ∈ 3 4 ; 5 4
D. m ∈ 5 4 ; 7 4
Với điều kiện nào của tham số m cho dưới đây, đường thẳng d: y=-3x+m cắt đồ thị (C) của hàm số y = 2 x + 1 x - 1 tại hai điểm phân biệt A và B sao cho trọng tâm tam giác OAB thuộc đồ thị (C) với O(0;0) là gốc tọa độ?
A. m = 15 - 5 13 2
B. m = 15 + 5 13 2
C. m = 7 + 5 13 2
D. Với mọi m
Giả sử m = - a b , a , b ∈ Z + , ( a , b ) = 1 là giá trị thực của tham số m để đường thẳng d : y = - 3 x + m cắt đồ thị hàm số y = 2 a + 1 x - 1 tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng ∆ : x - 2 y - 2 = 0 với O là gốc tọa độ. Tính a+2b
A. 2
B. 5
C. 11
D. 21
Cho hàm số y = x x − 1 có đồ thị = C và đường thẳng d : y = − x + m . Khi đó số giá trị của m để đường thẳng d cắt đồ thị C tại hai điểm phân biệt A, B sao cho tam giác OAB (O là gốc tọa độ ) có bán kính đường tròn ngoại tiếp bằng 2 2 là:
A.0
B. 3
C. 1
D. 2
Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Giả sử, đường thẳng d: y=kx+m là tiếp tuyến của (C), biết rằng d cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc tọa độ O. Tổng k+m có giá trị bằng:
A. 1.
B. 3.
C. -1
D. -3
Biết rằng đường thẳng d :y=-3x+m cắt đồ thị (C): y = 2 x + 1 x - 1 tại hai điểm phân biệt A và B sao cho trọng tâm G của tam giác OAB thuôc đồ thị (C) với O(0;0) là gốc tọa độ. Khi đó giá trị thực của tham số m thuộc tập hợp nào sau đây?
A. ( 2 ; 3 ]
B. ( 5 ; - 2 ]
C. 3 : + ∞
D. ( - ∞ ; - 5 ]
Cho đồ thị C m của hàm số y = x 3 - 3 m x 2 + 3 m 2 – a x – m 3 + 1 và điểm M(-2;2). Biết đồ thị C m có hai điểm cực trị A,B và tam giác ABM vuông tại M. Hỏi giá trị nào của m cho dưới đây thỏa mãn bải toán
A. m = -1
B. m = 1
C. Không có m
D. Vô số giá trị m
Gọi m1, m2 là các giá trị của tham số m để đồ thị hàm số y = 2x3 – 3x2 + m = 1 có hai điểm cực trị B, C sao cho tam giác OBC có diện tích bằng 2, với O là gốc tọa độ. Tính m1, m2
A. –20
B. –15
C. 12
D. 6