Xet ΔKNP vuông tại K và ΔHPN vuông tại H có
PN chung
góc KNP=góc HPN
=>ΔKNP=ΔHPN
Xet ΔKNP vuông tại K và ΔHPN vuông tại H có
PN chung
góc KNP=góc HPN
=>ΔKNP=ΔHPN
Cho ΔMNP cân tại M ( M < 90°). Kẻ NH ⊥ MP(H∈ MP), PK ⊥ MN (K∈ MN).NH và PK cắt nhau tại E. a) Chứng minh Δ NHP=ΔPKN b) Chứng minh ΔENP cân c) Chứng minh ME là đường phân giác của góc NMP
Cho tam giác MNP cân tại M ( góc M <90 độ). Kẻ NH vuông góc với MP ( H thuộc MP), PK vuông góc với MN ( K thuộc MN). NH và PK cắt nhau tại E.
a) chứng minh tam giác NHP= tam giác PKN.
b) chứng minh tam giác ENP cân.
c) Chứng minh ME là đường phân giác của góc NMP.
cho tam giác MNP cân tại M (góc M<90 độ) . kẻ NH vuông góc với MP (H thuộc MP), PK vuông góc với MN (K thuộc MN). NH và PK cắt nhau tại E
a, cm tam giác NHP=tam giác PKN
b, cm tam giác ENP cân
c, cm ME là đường phân giác của góc NMP
choΔMNP cân tại M (góc M =90 độ).Kẻ NHvuông gócMP(H ϵMN) ,PKvuông góc MN (kϵMN). NH và PK cắt nhau tại E
Cho ΔMNP cân tại M có MN=MP=5cm, NP=6cm. Kẻ MI vuông góc với MP(I∈MP)
a) chứng minh ΔMIN=ΔMIP
b) từ I kẻ IE vuông góc với MN(E∈MN) và IF vuông góc với MP(F∈MP). Chứng minh ME=MF. Tính độ dài của đoạn thẳng MI
Cho tam giác MNP cân tại M . MI là đường trung tuyến của tam giác MNP. kẻ NK vuông góc MP và cắt MI tại O.
chứng minh MI vuông góc np.
C/m PO vuông góc MN tại J.
C/m PK=NJ.
C/m Jk song song NP.
Kẻ phân giác góc MNO cắt MO tại H tính số đo góc MKH
Cho tam giác MNK cân tại M ( góc M nhỏ hơn 90độ ) .Vẽ NI vuông góc MK tại I , KP vuông góc MN tại P . Chứng minh rằng MI = MP . Gọi H là giao điểm của NI và PK Chứng minh MH là phân giác của góc M . Chứng minh PI song song NK
d7
câu 7: Cho ΔMNP cân tại M; các đường trung trực MN và MP cắt nhau tại O khi đó :
A.ON>OQ B.OMN>OMP
C.MON>MOP D.điểm o cách đều 3 đỉnh của ΔMNP
Câu 8: các đường cao của tam giác ABC cắt nhau tại H thì
A. điểm H là tọng tâm của tam giác ABC B. điểm H cách đều 3 cạnh của tam giác
C. điểm H cách đều 3 đỉnh A;B;C
D. điểm H là trực tâm của tam giác ABC
Câu 10: Cho ABC nhọn có góc B lớn hơn góc C gọi H là chân đường vuông góc kẻ từ A tới BC khi đó
A.AB<AH<AC
B.AB>AC
C.AH<AB<AC
D.AH<AC<AB
Cho tam giác MNP cân tại P có PM = PN = 15 cm, MN = 18cm. Kẻ PI ⊥ MN (I ϵ MN). Kẻ IH ⊥ MP (H ϵ MP), IK ⊥ NP (K ϵ NP)
a) Chứng minh rằng ΔMIP = ΔNIP
b) Chứng minh rằng IH = IK
c) Tính độ dài IP
d) Chứng minh HK // AB