cho hình vuông ABCD cạnh A ,E thuộc cạnh CD .tia phân giác góc BEF cắt AD tại K tia phân giác góc CBE cắt CD tại I .Gọi H là giao điểm của BE và KI , BK và BI lần lượt cắt Ac tại P ,Q . CMR a)PQ^2=AP^2+CQ^2
b)BE ,KQ,IP đồng quy
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M, trên tia đối của tia DC lấy điểm N sao cho BM=DN.
a, CMR tam giác ABM=ADN
b,CMR tam giác AMN vuông cân
c,Tia phân giác của góc MAN cắt CD tại P. CMR MP=BM+DP
d,Gọi AP cắt MN tại I. CMR MP=BM+DP
Cho hình vuông ABCD, điểm E thuộc cạnh CD. Tia phân giác của góc ABE cắt AD ở K. Chứng minh rằng AK+CE = BE.
Cho hình vuông ABCD, trên cạnh CD lấy điểm M sao cho CM<MD ( M khác C ). Từ M kẻ MK vuông góc với AB ( K thuộc AB )
a) Chứng minh tứ giác AKMD là hình chữ nhật
b) Tia phân giác của góc ABM cắt AD tại I, từ M kẻ đường thẳng vuông góc với BI tại đường thẳng này cắt đường thẳng AB tại E. chứng minh tam giác ABI = tam giác KME
c) Chứng minh BI<2MI
cho hình vuông ABCD. M thuộc CD. vẽ tia phân giác góc ABM cắt AD tại N. cm AN+CM= BM
Cho hình vuông ABCD. Lấy điểm M thuộc cạnh CD. Tia phân giác của góc MAD cắt cạnh CD tại I. Kẻ IH vuông góc với AM tại H. Tia IH cắt BC tại K.
A) tam giác ABK= tam giác AHK
B) góc IAK = 45 độ
9: Cho hình vuông ABCD, điểm E thuộc cạnh CD. Tia phân giác của góc ABE cắt
AD ở K. Chứng minh rằng AK+CE = BE.
B1)Tứ giác ABCD có AD=BC, các tia DA và CB cắt nhau tại O. Gọi I, K theo thứ tự là trung điểm của AB, CD. Đường thẳng IK cắt các đường thẳng AD, BC theo thứ tự ở E,F. CMR; OEF là tam giác cân
B2) Hình thang ABCD (AB//CD) có AB=a, CD=b, BC= c, AD= d. Các tia phân giác của các góc A và D cắt nhau ở E. Các tia phân giác của các góc B và C cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm của AD, BC.
a)CMR: 4 điểm M, E, F, N thẳng hàng
b) Tính các độ dài MN, MF, FN theo a,b,c,d
c) CMR: a+b= c+d thì E trùng với F
B3) Cho hình thang ABCD (AB//CD) có AB= AD+BC. CMR: các tia phân giác của góc C,D cắt nhau tại một điểm trên cạnh AB.