Trong không gian Oxyz, cho A(0;1;2), B(0;1;0), C(3;1;1) và mặt phẳng (Q): x + y + z - 5 = 0. Xét điểm M thay đổi thuộc (Q). Giá trị nhỏ nhất của biểu thức M A 2 + M B 2 + M C 2 bằng
A. 12
B. 0.
C. 8.
D. 10.
Trong không gian Oxyz, cho mặt phẳng (P):x+y+z-1=0 và hai điểm A (1;-3;0), B (5;-1;-2). Điểm M (a;b;c) nằm trên (P) và |MA – MB| lớn nhất. Giá trị abc bằng:
A. 1
B. 12
C. 24.
D. -24.
Trong không gian Oxyz, cho hai điểm A(-14;13;-4), B(-7;-1;1). Xét điểm M di động trên mặt cầu (S): ( x + 5 ) 2 + ( y + 5 ) 2 + ( z - 14 ) 2 = 324 Giá trị lớn nhất của 2MA – 3MB bằng
Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+ (y+2)²+ (z-3)²=27. Gọi (α) là mặt phẳng đi qua hai điểm A (0; 0; -4), B (2; 0; 0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là là đường tròn (C) có thể tích lớn nhất. Biết rằng (α): ax+by-z+c=0, khi đó a-b+c bằng:
A. -4.
B. 8.
C. 0.
D. 2.
Trong không gian Oxyz cho ba điểm A (0;2;-2),
B (-3;1;-1), C (3;-1;2). Điểm M (a;b;c) thuộc
mặt phẳng ( α ): 2x -y +2z + 7 = 0 sao cho biểu
thức 3 M A → + 5 M C → - 7 M C → đạt giá trị nhỏ nhất.
Tính a+b+c
Trong không gian Oxyz, cho hai điểm A(10;6;-2), B(5;10;-9) và mặt phẳng ( α ) : 2 x + 2 y + z - 12 = 0 Điểm M di động trên mặt phẳng ( α ) sao cho MA, MB luôn tạo với ( α ) các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn ( ω ) cố định. Hoành độ của tâm đường tròn ( ω ) bằng
A. 9 2
B. 2
C. 10
D. -4
1.Cho điểm M(1 ; 4 ; 5) và mặt phẳng (α): x + y + z -1 =0. Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng (α).
Cho điểm M(1; 4; 2) và mặt phẳng (α): x + y + z – 1 = 0 Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng (α).
Trong không gian Oxyz, cho hai điểm A(2;-2;4), B(-3;3;-1) và mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 3 ) 2 + ( z - 3 ) 2 = 3 . Xét điểm M thay đổi thuộc mặt cầu (S), giá trị nhỏ nhất của 2 M A → 2 + 3 M B → 2 bằng
A. 103
B. 108
C. 105
D. 100