\(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}=\dfrac{2a+3c+2a-3c}{2b+3d+2b-3d}=\dfrac{a}{b}\)
\(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}=\dfrac{2a+3c-\left(2a-3c\right)}{2b+3d-\left(2b-3d\right)}=\dfrac{c}{d}\)
Suy ra \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}=\dfrac{2a+3c+2a-3c}{2b+3d+2b-3d}=\dfrac{a}{b}\)
\(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}=\dfrac{2a+3c-\left(2a-3c\right)}{2b+3d-\left(2b-3d\right)}=\dfrac{c}{d}\)
Suy ra \(\dfrac{a}{b}=\dfrac{c}{d}\)
Cho a,b,c>0. Chứng minh \(\dfrac{ab}{a+3b+2c}\)+\(\dfrac{bc}{b+3c+2a}\)+\(\dfrac{ca}{c+3c+2b}\)≤\(\dfrac{a+b+c}{6}\)
Mong mọi người giúp đỡ
giúp mình càng sớm càng tốt nhe các bạn
cho a,b,c là 3 cạnh tam giác, cmr:
\(\dfrac{3a+b}{2a+c}+\dfrac{3b+c}{2b+a}+\dfrac{3c+a}{2c+b}\ge4\)
Cho a,b,c lớn hơn 0. Chứng minh \(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}\)+\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}\)+\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}\)≥\(\dfrac{a+b+c}{9}\)
Cho a,b,c>0. Chứng minh rằng: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3\)
Cho a,b,c >0, chứng minh rằng :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)
Cho các số \(a,b,c,d\) nguyên dương đôi một khác nhau và thỏa mãn: \(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\). Chứng minh \(A=abcd\) là số chính phương.
Cho a, b, c, d là các số thực dương. Chứng minh :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\left(a,b,c,d\ne0\right)\)
Chứng minh:
1) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
2) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
Cho a,b,c dương ( lớn hơn 0) và \(a+b+c=3\)
chứng minh: \(\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2a}+\dfrac{c}{1+a^2b}\ge\dfrac{3}{2}\)
giúp mik với, mik cảm ơn