\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{20^2}\) . CMR : A<1
Giải:
Có \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\\ \dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\\ ....\\ \dfrac{1}{20^2}< \dfrac{1}{19\cdot20}\)
Nên `A=1/2^2+1/3^2+1/4^2+...+1/(20^2)<1/1.2+1/2.3+1/3.4+...+1/19.20`
`=1-1/2+1/2-1/3+1/3-1/4+...+1/19-1/20=1-1/20=19/20`
Mà `19/20<1`
nên `A<1(đpcm)`