Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
oOo_Duy Anh Nguyễn_oOo

Cho \(\Delta ABC\) vuông tại A , đường cao AH . Biết BC = 5 cm , BH = 1,8 cm . Gọi M là trung điểm của BC , đường trung trực của BC cắt AC tại D .

a) Tính AB , AH

b) Tính tỉ số diện tích của \(\Delta DMC\) và \(\Delta ABC\)

c) Chứng minh : AC . DC = \(\frac{1}{2}BC^2\)

d) Tính diện tích tứ giác ADMB

Nguyễn Tấn Phát
17 tháng 8 2019 lúc 20:54

\(\text{Hình bạn tự vẽ ^_^}\)

\(\text{a)Ta có: }AB^2=HB.BC=1,8.5=9\)

\(\Rightarrow AB=\sqrt{9}=3\left(\text{cm}\right)\)

\(\text{Lại có: }HC=BC-BH=5-1,8=3,2\left(\text{cm}\right)\)

\(\text{và: }AH^2=BH.CH=1,8.3,2=5,76\)

\(\Rightarrow AH=\sqrt{5,76}=2,4\left(\text{cm}\right)\)

\(\text{b) vì M là trung điểm BC nên }BM=CM=\frac{BC}{2}=\frac{5}{2}=2,5\left(\text{cm}\right)\)

\(\text{Ta lại có: }AC^2=CH.BC=3,2.5=16\)

\(\Rightarrow AC=\sqrt{16}=4\left(\text{cm}\right)\)

\(\text{Xét }\Delta DMC\text{ và }\Delta BAC\text{ có:}\)

\(\widehat{DMC}=\widehat{BAC}=90^o\)

\(\widehat{C}\text{ là góc chung}\)

\(\text{ }\Rightarrow\Delta DMC\text{ đồng dạng với }\Delta BAC\)

\(\Rightarrow\frac{DM}{AB}=\frac{DC}{BC}=\frac{CM}{AC}=\frac{2,5}{4}=0,625\left(\text{Tỉ số đồng dạng}\right)\)

\(\text{Vậy }\frac{S_{DMC}}{S_{BAC}}=\left(0,625\right)^2=\frac{25}{64}\)

Bui Huyen
17 tháng 8 2019 lúc 21:10

a, \(AB=\sqrt{BH\cdot BC}=\sqrt{1,8\cdot5}=3\)

\(AH=\sqrt{AB^2-BH^2}=\sqrt{3^2-1,8^2}=2,4\)

b, \(\frac{S_{ABC}}{S_{DMC}}=\frac{MC^2}{BC^2}=\frac{1}{4}\)

c,\(\Delta ABC~\Delta MDC\Rightarrow\frac{BC}{DC}=\frac{AC}{MC}\Rightarrow AC\cdot CD=\frac{1}{2}BC^2\)

d,Cái này bạn tự tính nhá

Mk hơi lười nên làm hơi tắt có j thông cảm mk nha


Các câu hỏi tương tự
Đinh Thị Hải Thanh
Xem chi tiết
Tuyết Mai
Xem chi tiết
Vinh Đặng
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
Bảo Huy
Xem chi tiết
Nguyễn Đức An
Xem chi tiết
Nguyễn Thu Giang
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
Vân Lê
Xem chi tiết