Chọn A.
Chúng ta đi tìm công thức xác định số hạng tổng quát của dãy số (an).
Đặt bn = an + 5 khi đó bn+1 = an+1 + 5.
Từ hệ thức truy hồi an+1 = 3an + 10 suy ra bn+1 – 5 = 3(bn – 5) + 10 ⇔ bn+1 = 3bn.
Như vậy ta có b1 = a1 + 5 = 6; bn+1 = 3bn.
Ta có b2 = 3b1; b3 = 3b2 = 32b1; b4 = 3b3 = 33b1.
Bằng phương pháp quy nạp ta chứng minh được rằng bn = 3n-1b1, ∀ n ∈ R*, suy ra an = 2.3n – 5, ∀ n ∈ R*.
Do đó a15 = 28697809.