Ta có: u n = − 1 n .2 5 n + 1 3 5 n + 2 = − 1 n .2.2 5 n 3 2 .3 5 n = − 1 .2 9 . 2 3 5 n
Vì 2 3 < 1 nên lim 2 3 5 n = 0 . Do đó lim u n = 0
Chọn đáp án B
Ta có: u n = − 1 n .2 5 n + 1 3 5 n + 2 = − 1 n .2.2 5 n 3 2 .3 5 n = − 1 .2 9 . 2 3 5 n
Vì 2 3 < 1 nên lim 2 3 5 n = 0 . Do đó lim u n = 0
Chọn đáp án B
Cho dãy số u(n)=\(1/(2*4) +1/(5*7)+...+1/((3n-1)*(3n+1))\)
Tính Lim u(n).
Cho dãy số u ( n ) xác định bởi u ( 1 ) = 1 ; u ( m + n ) = u ( m ) + u ( n ) + m n , ∀ m , n ∈ ℕ * . Tính u ( 2017 )
A. 2035153
B. 2035154
C. 2035155
D. 2035156
Chứng minh các đẳng thức sau (với n∈N∗n∈N∗)
a) 2+5+8+...+(3n−1)=n(3n+1)22+5+8+...+(3n−1)=n(3n+1)2;
b) 3+9+27+...+3n=12(3n+1−3)3+9+27+...+3n=12(3n+1−3).
dãy số nào là 1 cấp số cộng ( giải chi tiết )
a) 10; 5; 0; -4; -9; -14
b) -2; 5; 12; 19; 29
c) -3; -3; -3; -3; -3
d) \(u_n=n^2\)
e) \(u_n=1-4n\)
f) \(u_n=2-5n\)
Cho dãy số (Un) xác định bởi U1=-3 và U(n+1)=Un+ n^2 -3n +4, mọi n thuộc N*. Số 1391 là số hạng thứ mấy của dãy ?
Cho dãy số được xác định bởi: U1=12
\(\frac{2\cdot U_{n+1}}{n^2+5n+6}=\frac{U_n+n^2-n-2}{n^2+n}\)
Tìm số hạng tổng quát của dãy số
Cho dãy số xác định bởi u1=1 , u n+1 = \(2un+\frac{n-1}{n^2+3n+2}\). khi đó u 2018 bằng
cho dãy số (un):\(\left\{{}\begin{matrix}u_1=\sqrt{3}+\sqrt{2}\\u_{n+1}=\left(\sqrt{3}-\sqrt{2}\right)u^2_n+\left(2\sqrt{6}-5\right)u_{n_{ }}+3\sqrt{3}-3\sqrt{2}\end{matrix}\right.\)
tìm lim(\(\Sigma^1_{i=1}\dfrac{1}{u_i+\sqrt{2}}\))