a, Vì \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\) nên ADHE là hcn
Do đó AH=DE
a, Vì \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\) nên ADHE là hcn
Do đó AH=DE
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Gọi D và E lần lượt là chân các đường vuông góc kẻ từ H xuống AB,AC.
a) Cho BH=4cm , CH=9cm. Tính AH,DE.
b) Chứng minh bốn điểm A,D,H,E cùng nằm trên một đường tròn.
c) Đường phân giác của BAH^ cắt BC tại K . Gọi I là trung điểm của AK . Chứng minh CI vuông góc AK.
Cho tam giác ABC vuông tại A , đường cao AH . Gọi D và E lần lượt là hình chiếu của điểm H trên các cạnh AB và AC
a, Chứng minh AD . AB = AE . AC
b, Gọi M , N lần lượt là trung điểm của BH và CH . Chứng minh DE là tiếp tuyến chung của 2 đường tròn ( M , MD ) và ( N , NE )
c,Gọi P là trung điểm MN , Q là giao điểm của DE và AH , giả sử AB=6cm , AC=8cm . Tính độ dài PQ
Cho tam giác ABC có góc A bằng 90o, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH = 4cm, HC = 9cm.
a) Tính độ dài DE.
b) Chứng minh AD. AB = AE. AC
c) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH.
d) Tính diện tích tứ giác DENM.
tui còn câu d ko làm được thoi ai giúp với
Cho tam giác ABC vuông tại A có đường cao AH. Gọi M và N lần lượt là hình chiếu của H lên AB,AC.
a) Biết rằng AB=12 cm, BC=20cm. Tính CH và AH ?
b) Chứng minh: AM.AB=AN.AC
c) Chứng minh tanB + tanC = BC/AH
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H lên AB và AC.
a) Chứng minh EF.AH=HB.HC
b) Chứng minh BE=BC.cos3B
Cho tam giác ABC vuông tại âkẻ đường cao AH sao cho BH = 9 cm CH= 16 cm a tính độ dài AH AB và CD Gọi D và E lần lượt là hình chiếu vuông góc của H Trên cạnh AB và AC cắt BD tại I Chứng minh rằng góc ADE = góc ACB .c)gọi O là trung điểm của BC , AOcắt DE tại k Chứng minh rằng AH mũ 2 =AK.BC
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
Cho ΔABC vuông tại A, đường cao AH. Gọi E,F lầ lượt là hình chiếu của H trên AB và AC a) Chứng minh ΔAFE ∼ ΔABC b) Chứng minh AH^3= BC.BE.CF
Cho tam giác ABC vuông tại A, đường cao AH,AB=3cm, BC=6cm. Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC.
a) giải tam giác vuông ABC
b)tính độ dài AH và chứng minh: EF=AH
c) tính: EA.EB + AF.FC