b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Cho tam giác ABC vuông tại A có đường cao AH. Gọi M và N lần lượt là hình chiếu của H lên AB và AC. a.Biết AB=12 cm,BC=20 cm. Tính CH và AH b. C/m AM.AB=AN.AC c.Chứng minh tanB + tanC = BC/AH
cho tam giác abc vuông tại a có đường cao ah chia cạnh huyền bc thành hai đoạn bh=4 hc=9 a) tính ah,ab,ac b) gọi m,n lần lượt là hình chiếu của h trên ab và ac chứng minh rằng am.ab=an.ac
Cho tam giác ABC vuông tại A có AH là đường cao. Biết AC= 16cm, BC = 20 cm
a)Giải tam giác ABC
b)Tính CH và AH
c) Gọi M,N lần lượt là hình chiếu vuông góc của H trên AB và AC. Chứng minh: AM.AB= BH.HC
Mấy anh chị làm giúp em cái nay đi ;(
Cho tam giác ABC vuông tại A, đường cao AH,AB=3cm, BC=6cm. Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC.
a) giải tam giác vuông ABC
b)tính độ dài AH và chứng minh: EF=AH
c) tính: EA.EB + AF.FC
cho ∆ABC có AB=15cm, AC=20cm và BC=25cm. a) chứng minh : ∆ABC vuông tại A. b) kẻ đường cao AH của ∆ABC. Tính AK, BK và số đo góc C. (làm tròn đến độ) c) gọi M, N lần lượt là hình chiếu của K lên AB, AC. Chứng minh AM.AB=AN.AC. Suy ra ∆AMN đồng dạng với ∆ABC. d) gọi D là trung điểm và I là điểm đối xứng của A qua K. Chứng minh: CD ⊥ IN
Bài 5: Cho tam giác ABC vuông tại A ( AB AC) . Đường cao AH (H BC ).Gọi M và Nl ần lượt là hình chiếu của H trên AB và AC.
a) Giả sử HB = 3,6cm, HC = 6,4cm. Tính độ dài HA, AC và góc B, góc C
b) Chứng minh: AM.AB=AN.AC và HB.HC=AM.MB + AN.NC
c) QuaAkẻ đường thẳng vuông góc với MN cắt BC tại K. Chứng minh rằng: K là trung điểm của đoạn thẳng BC
cho tam giác ABC vuông tại A có đường cao AH ( H∈BC)
a) Cho biết AB=6cm,BC=10cm. Tính AC,AH,BH
bb) Gọi E,F lần lượt là hình chiếu của điểm H lên các cạnh AB,AC. Chứng minh AE.AB=AF.AC và △AFE∼△ABC
c) Kẻ phân giác BD của góc ABC ( D∈ AC). Chứng minh : cotDBC=(AB+BC)/AC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H lên AB và AC.
a) Chứng minh EF.AH=HB.HC
b) Chứng minh BE=BC.cos3B
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, đường cao AH. a) Tính BC, BH, AH. b) Gọi M, N lần lượt là chân đường vuông góc kẻ từ H đến AB, AC. Chứng minh rằng : AM.AB = AN.AC