a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Đề sai rồi bạn
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Đề sai rồi bạn
Bài 3: Cho ΔABC vuông tại A , vẽ tia phân giác BD của góc ABC (D AC). Trên cạnh BC lấy điểm E sao cho BE = AB . a) Chứng minh: ΔABD = ΔEBD b) Chứng minh: Tam giác ADE là tam giác cân. Vẽ AH vuông góc với BC (H BC) . Chứng minh : AH // DE và BAH ACH c) Chứng minh: AE là tia phân giác của góc HAC. d) Gọi K là giao điểm của AB và ED. Chứng minh: AK = EC và AE //
Cho ΔABC vuông tại A , vẽ tia phân giác BD của gúc ABC (D Î AC). Trên cạnh BC lấy điểm E sao cho BE = AB , nối D với E .
a) Chứng minh ΔABD = ΔEBD
b) Chứng minh góc BED là góc vuông
Vẽ AH vuông góc với BC (H Î BC) . Chứng minh : và AH // DE
Cho tam giác ABC vuông tại A(AB<AC)Vẽ AH vuông góc BC.Trên HC lâý D sao cho HB=HD
a)Chứng minh tam giác AHB=tam giác AHD
b) Vẽ CE vuông góc AD tại E.Chứng minh CB là phân giác của góc ACE
c)Tia CE cắt tia AH taị K.Chứng minh KD//AB
Cho ΔABC vuông tại A, vẽ BD là tia phân giác góc ABC (D∈AC). Trên cạnh BC, lấy điểm E sao cho AB=BE. Chứng minh rằng:
a) ΔABD= ΔEBD
b) DE⊥BC
c) Từ A kẻ AH vuông góc với BC (H∈ BC), chứng minh góc BAH = góc ACB
Cho tam giác ABC vuông tại A có AB=4 cm , AC=5 cm
a.Tính BC
b.Trên cạnh BC lấy điểm D sao cho BD=BA . Kẻ AH vuông góc với BC , Kẻ DK vuông góc với AC . Chứng minh góc BAD = góc BDA . Chứng minh AD là tia phân giác của góc HAC . Chứng minh AK=AH
Cho ΔABC vuông tại A, AH ⊥ BC tại H. Trên cạnh BC lấy D sao cho BD = BA. Đường vuông góc với BC tại D cắt AC ở E
a) So sánh AE và DE
b) Chứng minh tia AD là tia phân giác của góc HAC
c) Vẽ DK vuông góc với AC tại K. Chứng minh rằng AK = AH
Cho tam giác ABC vuông tại A có góc ABC=60°
a) Tính số đo góc ACB b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh:
ΔABD=ΔABC
c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thắng vuông góc với AC, cắt tia Bx tại E. Chứng minh: AC=BE
d) Qua D kẻ đường thẳng song song với AB, qua B kẻ đường thẳng song song với AD. Chúng cắt nhau tại H. CM: DH⊥BH.
Bài 3 Cho ΔABC cân tại A. Kẻ BH vuông góc với AC, CK vuông góc với AB. Gọi M là giao điểm của của BH và CK. a) Chứng minh AH = AK. b) Chứng minh AM là tia phân giác của góc A. c) Chứng minh KH // BC.
Cho tam giác ABC cân tại A ( A ^ < 90 ° ) . Kẻ BH vuông góc với AC, CK vuông góc với AB ( H ∈ A C , K ∈ A B ) .
a) Chứng minh AH = AK
b) Gọi I là giao điểm của BH và CK. Chúng minh AI là tia phân giác của góc A.