Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sweetrabbit79

Cho ΔABC có AB = AC, tia phân giác của góc BAC cắt BC tại D.
1) Chứng minh rằng: AD ⊥ BC .
2) Lấy điểm E thuộc AB, điểm F thuộc AC, sao cho BE = CF. Chứng minh DA là tia phân giác của góc EDF.

Nguyễn Lê Phước Thịnh
13 tháng 1 2024 lúc 19:22

1: Xét ΔADB và ΔADC có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔADB=ΔADC

=>\(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD\(\perp\)BC

2: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC và AB=AC

nên AE=AF

Xét ΔEAD và ΔFAD có

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔEAD=ΔFAD

=>\(\widehat{EDA}=\widehat{FDA}\)

=>DA là phân giác của góc EDF

Akai Haruma
14 tháng 1 2024 lúc 0:16

Lời giải:

1. Xét tam giác $ABD$ và $ACD$ có:

$AB=AC$

$\widehat{BAD}=\widehat{CAD}$ (do $AD$ là tia phân giác $\widehat{BAC}$)

$AD$ chung

$\Rightarrow \triangle BAD=\triangle CAD$ (c.g.c)

$\Rightarrow \widehat{ADB}=\widehat{ADC}$ 

Mà $\widehat{ADB}+\widehat{ADC}=180^0$

$\Rightarrow \widehat{ADB}=\widehat{ADC}=180^0:2=90^0$

$\Rightarrow AD\perp BC$

2.

$AB=AC$

$BE=CF$

$\Rightarrow AB-BE=AC-CF$ hay $AE=AF$

Xét tam giác $AED$ và $AFD$ có:

$AD$ chung

$AE=AF$

$\widehat{EAD}=\widehat{FAD}$ 

$\Rightarrow \triangle AED=\triangle AFD$ (c.g.c)

$\Rightarrow \widehat{EDA}=\widehat{FDA}$ 

$\Rightarrow DA$ là tia phân giác $\widehat{EDF}$

Akai Haruma
13 tháng 1 2024 lúc 19:14

Hình vẽ:


Các câu hỏi tương tự
Trần Hoàng Minh
Xem chi tiết
Khánh Ly Phan
Xem chi tiết
Trường Chinh
Xem chi tiết
Ngô Thị Thanh Hằng
Xem chi tiết
Lê Thanh Thúy
Xem chi tiết
VKOOK_BTS
Xem chi tiết
Lưu Phương Anh
Xem chi tiết
Minhtuyen676@gmail.com H...
Xem chi tiết
Minhtuyen676@gmail.com H...
Xem chi tiết