\(\text{#TNam}\)
`a,`
Xét Tam giác `AIB` và Tam giác `AIC` có:
`AB = AC (\text {Tam giác ABC cân tại A})`
\(\widehat{B}=\widehat{C} (\text {Tam giác ABC cân tại A})\)
`IB = IC (\text {I là trung điểm BC})`
`=> \text {Tam giác AIB = Tam giác AIC (c-g-c)}`
`->`\(\widehat{AIB}=\widehat{AIC} (\text {2 góc tương ứng})\)
Mà `2` góc này nằm ở vị trí kề bù
`->` \(\widehat{AIB}+\widehat{AIC}=180^0\)
`->`\(\widehat{AIB}=\widehat{AIC}=\) `180/2=90^0`
`-> Ai \bot BC (đpcm).`
`b,`
Xét Tam giác `BDI` và Tam giác `CEI` có:
`IB = IC (g``t)`
\(\widehat{B}=\widehat{C} (gt)\)
\(\widehat{BDI}=\widehat{CEI}=90^0\)
`=> \text {Tam giác BDI = Tam giác CEI (ch-gn)}`
`-> BD = CE (\text {2 cạnh tương ứng})`
`c,`
Vì Tam giác `AIB =` Tam giác `AIC (a)`
`->`\(\widehat{BAI}=\widehat{CAI} (\text {2 góc tương ứng})\)
Xét Tam giác `ADI` và Tam giác `AEI` có:
`\text {AI chung}`
\(\widehat{DAI}=\widehat{EAI} (CMT)\)
\(\widehat{ADI}=\widehat{AEI}=90^0\)
`=> \text {Tam giác ADI = Tam giác AEI (ch-gn)}`
`-> AD = AE (\text {2 cạnh tương ứng})`
Xét Tam giác `ADE: AD = AE`
`-> \text {Tam giác ADE cân tại A}`
`->`\(\widehat{ADE}=\widehat{AED}\)\(=\dfrac{180-\widehat{A}}{2}\)
Tam giác `ABC` cân tại `A`
`->`\(\widehat{B}=\widehat{C}=\)\(\dfrac{180-\widehat{A}}{2}\)
`->`\(\widehat{ADE}=\widehat{B}\)
Mà `2` góc này nằm ở vị trí đồng vị
`-> \text {DE // BC (t/c 2 đt' //)}`