Lời giải:
Tại $x=2012$ thì $x-2012=0$. Ta có
$P(x)=x^5-2013x^4+2013x^3-2013x^2+2013x-2014$
$=x^4(x-2012)-x^3(x-2012)+x^2(x-2012)-x(x-2012)+(x-2012)-2$
$=(x-2012)(x^4-x^3+x^2-x+1)-2$
$=0.(x^4-x^3+x^2-x+1)-2=-2$
Cách khác:
Ta có: x=2012
nên x+1=2013
Ta có: \(P\left(x\right)=x^5-2013x^4+2013x^3-2013x^2+2013x-2014\)
\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2014\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2014\)
\(=x-2014=2012-2014=-2\)