Lời giải:
\(\left\{\begin{matrix} P(1)=a+b+c+d=100\\ P(0)=d=1\\ P(-1)=-a+b-c+d=50\\ P(2)=8a+4b+2c+d=120\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} d=1\\ a+b+c=99(1)\\ -a+b-c=49(2)\\ 8a+4b+2c=119(3)\end{matrix}\right.\)
Từ $(1); (2)\Rightarrow 2b=148\Rightarrow b=74$
Thay $b=74$ vào $(1); (3)$ ta có:
$a+c=25; 8a+2c=-177$
$\Leftrightarrow a+c=25; 4a+c=\frac{-177}{2}$
$\Rightarrow 3a=\frac{-227}{2}\Rightarrow a=\frac{-227}{6}$
$c=25-a=\frac{377}{6}$
Vậy $P(x)=\frac{-227}{6}x^3+74x^2+\frac{377}{6}x+1$
Do đó $P(3)=-166$