\(f\left(x\right)=ax^3+bx^2+cx+d\)
Ta có: \(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\left(1\right)\)
\(f\left(-2\right)=a.\left(-2\right)^3+b.\left(-2\right)^2+c.\left(-2\right)+d=-8a+4b-2c+d\left(2\right)\)
Trừ (2) cho (1),vế theo vế:
\(f\left(-2\right)-f\left(1\right)=\left(-8a+4b-2c+d\right)-\left(a+b+c+d\right)\)
\(=-8a+4b-2c+d-a-b-c-d=\left(-8a-a\right)+\left(4b-b\right)+\left(-2c-c\right)+\left(d-d\right)\)
\(=-9a+3b-3c=3.\left(-3a+b-c\right)\)
thiếu đề rồi!