Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cấn Nhung

cho đa thức P(x)=ax3+bx2+cx+d .Với P(0) và P(1) là số lẻ . Chứng minh rằng P(x) không thể có nghiệm là số nguyên

Akai Haruma
14 tháng 6 2021 lúc 10:19

Lời giải:

$P(0)=d$ lẻ

$P(1)=a+b+c+d$ lẻ, mà $d$ lẻ nên $a+b+c$ chẵn. Do đó 3 số này có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn.

Giả sử $P(x)$ có nghiệm nguyên $m$. Khi đó:

$P(m)=am^3+bm^2+cm+d$

Nếu $m$ chẵn thì $am^3+bm^2+cm+d$ lẻ cho $d$ lẻ nên $P(m)\neq 0$

Nếu $m$ lẻ: Do $a,b,c$ nhận giá trị lẻ, chẵn, chẵn hoặc chẵn, chẵn, chẵn nên $am^3+bm^2+cm$ đều chẵn. Kéo theo $P(m)=am^3+bm^2+cm+d$ lẻ

$\Rightarrow P(m)\neq 0$

Tóm lại $P(m)\neq 0$

$\Rightarrow x=m$ không là nghiệm của $P(x)$. Do đó điều giả sử là sai.

 Ta có đpcm.

 

 

 


Các câu hỏi tương tự
ho thi to uyen
Xem chi tiết
nguyễn Vương Gia BẢO
Xem chi tiết
Rarah Venislan
Xem chi tiết
Cố gắng lên bạn nhé
Xem chi tiết
trinh
Xem chi tiết
Xem chi tiết
Vũ Tiến Tùng
Xem chi tiết
Frisk
Xem chi tiết
nightqueen
Xem chi tiết