Cho đa giác lồi A1A2...An ; \(\overrightarrow{e_i}\) \(\left(1\le i\le n\right)\) là vecto đơn vị vuông góc với \(\overrightarrow{A_iA_{i+1}}\) (xem \(A_{n+1}\equiv A_1\)) và hướng ra phía ngoài đa giác. Chứng minh rằng \(A_1A_2\overrightarrow{e_1}+A_2A_3\overrightarrow{e_2}+...+A_nA_1\overrightarrow{e_n}=\overrightarrow{0}\)
Ta sẽ chứng minh bằng quy nạp : Giả sử đẳng thức đúng với đa giác (n-1) cạnh.
Gọi \(\overrightarrow{e}\) là vecto đơn vị vuông góc với \(A_1A_{n-1}\) và hướng ngoài tam giác \(A_1A_{n-1}A_n\)
Ta dễ dàng chứng minh được \(A_nA_1.\overrightarrow{e_n}+A_1A_{n-1}.\overrightarrow{e}+A_{n-1}.A_n.\overrightarrow{e_{n-1}}=\overrightarrow{0}\Leftrightarrow A_nA_1\overrightarrow{e_n}+A_{n-1}A_n\overrightarrow{e_{n-1}}=-\overrightarrow{e}A_1A_{n-1}\)Giả sử đẳng thức đúng với n-1 , tức \(A_1A_2.\overrightarrow{e_1}+A_2A_3\overrightarrow{e_2}+...+A_{n-1}A_n\overrightarrow{e_{n-1}}=\overrightarrow{0}\)
Từ giả thiết quy nạp ta có
\(A_1A_2.\overrightarrow{e_1}+A_2A_3\overrightarrow{e_2}+...+A_{n-1}A_n\overrightarrow{e_{n-1}}-A_1A_{n-1}\overrightarrow{e}=\overrightarrow{0}\)
\(A_1A_2.\overrightarrow{e_1}+A_2A_3\overrightarrow{e_2}+...+A_{n-1}A_n\overrightarrow{e_{n-1}}+A_nA_1\overrightarrow{e_n}+A_{n-1}A_n\overrightarrow{e_{n-1}}=\overrightarrow{0}\)(đpcm)