Cho mặt phẳng (P): x-2y+z-4=0 và đường thẳng d : x - 3 3 = y + 5 - 5 = z - 3 - 1 . Viết phương trình hình chiếu vuông góc của d trên (P).
Trong không gian Oxyz, cho mặt phẳng (P): x+y +z -3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Hình chiếu vuông góc của d trên (P) có phương trình là
A. x + 1 - 1 = y + 1 - 4 = z + 1 5
B. x - 1 3 = y - 1 - 2 = z - 1 - 1
C. x - 1 1 = y - 1 4 = z - 1 - 5
D. x - 1 1 = y - 1 1 = z + 5 1
Cho hai mặt phẳng P : 2 x - y + z + 1 = 0 và Q : x + y + 2 z + 2 = 0 . Gọi d = P ∩ Q . Viết phương trình (d)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 2 và hai đường thẳng d: x - 2 1 = y 2 = z - 1 - 1 , ∆ : x 1 = y 1 = z - 1 - 1 . Phương trình nào dưới đây là phương trình của một mặt phẳng tiếp xúc với (S), song song với d và ∆ ?
A. x+z+1=0
B. x+y+1=0
C. y+z+3=0
D. x+z-1=0
Trong không gian Oxyz, cho 2 đường thẳng d : x = - 1 - 2 t y = t z = - 1 + 3 t , d ' : x = 2 + t ' y = - 1 + 2 t ' z = - 2 t ' và mặt phẳng (P): x + y + z + 2 = 0. Đường thẳng vuông góc với mặt phẳng (P), cắt d và d' có phương trình là
Trong không gian Oxyz, cho 2 đường thẳng d : x = - 1 - 2 t y = t z = - 1 + 3 t , d ' : x = 2 + t y = - 1 + 2 t z = - 2 t và mặt phẳng (P): x + y + z + 2 = 0. Đường thẳng vuông góc với mặt phẳng (P), cắt d và d' có phương trình là
A. x - 3 1 = y - 1 1 = z + 2 1
B. x - 1 1 = y - 1 1 = z - 1 - 4
C. x + 2 1 = y + 1 1 = z - 1 1
D. x + 2 2 = y - 1 2 = z - 4 2
Trong không gian Oxyz, cho mặt phẳng (P): x + y + z - 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Đường thẳng d' đối xứng với d qua mặt phẳng (P) có phương trình là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y+z-7=0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 3 và hai đường thẳng d x : x - 2 1 = y 2 = z - 1 - 1 ; △ : x 1 = y 1 = z - 1 - 1 Phương trình nào dưới đây là phương trình mặt phẳng cắt mặt cầu (S) theo giao tuyến là một đường tròn (C) có bán kính bằng 1 và song song với d và △ .