Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mạnh Linh Nguyễn

Cho ∆𝐴𝐵𝐶 có 𝐻 là trực tâm, 𝐺 là trọng tâm. Các đường thẳng vuông 
góc với  𝐴𝐵  tại  𝐵  và  𝐴𝐶  tại  𝐶  cắt nhau  ở  𝐷.  Gọi  𝐸, 𝐹, 𝐼, 𝐽  là trung điểm của 
các đoạn thẳng 𝐵𝐶, 𝐴𝐷, 𝐴𝐺, 𝐻𝐺.
a)  Chứng minh rằng tứ giác 𝐵𝐻𝐶𝐷 là hình bình hành.
b)  Biết 𝐵𝐴𝐶 ̂ = 60^𝑜, tính số đo góc 𝐵𝐻𝐶 ̂.
c)  Chứng minh rằng 𝐻, 𝐸, 𝐷 thẳng hàng.
d)  Chứng minh rằng 𝐴𝐻 = 2𝐹𝐸 và 𝐹𝐸 ⊥ 𝐵𝐶.
e)  Chứng minh rằng 𝐴𝐻 = 2𝐼𝐽 và 𝐻, 𝐺, 𝐹 thẳng hàng.

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 20:12

a: Xét tứ giác BHCD có 

CH//BD

BH//CD

Do đó: BHCD là hình bình hành


Các câu hỏi tương tự
Mạnh Linh Nguyễn
Xem chi tiết
Mạnh Linh Nguyễn
Xem chi tiết
Mạnh Linh Nguyễn
Xem chi tiết
Mạnh Linh Nguyễn
Xem chi tiết
Tra Huan
Xem chi tiết
Dương
Xem chi tiết
Dương
Xem chi tiết
Dương
Xem chi tiết
Ôn Trác Hạo
Xem chi tiết