a: Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó: BHCD là hình bình hành
a: Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó: BHCD là hình bình hành
Cho ∆𝐴𝐵𝐶 có 𝐻 là trực tâm, 𝐺 là trọng tâm. Các đường thẳng vuông
góc với 𝐴𝐵 tại 𝐵 và 𝐴𝐶 tại 𝐶 cắt nhau ở 𝐷. Gọi 𝐸, 𝐹, 𝐼, 𝐽 là trung điểm của
các đoạn thẳng 𝐵𝐶, 𝐴𝐷, 𝐴𝐺, 𝐻𝐺.
a) Chứng minh rằng tứ giác 𝐵𝐻𝐶𝐷 là hình bình hành.
b) Biết 𝐵𝐴𝐶 ̂ = 60^𝑜, tính số đo góc 𝐵𝐻𝐶 ̂.
c) Chứng minh rằng 𝐻, 𝐸, 𝐷 thẳng hàng.
d) Chứng minh rằng 𝐴𝐻 = 2𝐹𝐸 và 𝐹𝐸 ⊥ 𝐵𝐶.
e) Chứng minh rằng 𝐴𝐻 = 2𝐼𝐽 và 𝐻, 𝐺, 𝐹 thẳng hàng.
Cho ∆𝐴𝐵𝐶 có trung tuyến 𝐴𝐷, trọng tâm 𝐺. Qua 𝐺 kẻ đường thẳng 𝑑 cắt các cạnh 𝐴𝐵, 𝐴𝐶. Gọi 𝐸 là trung điểm 𝐴𝐺. Gọi 𝐹, 𝐻, 𝐼, 𝐽, 𝐾 là hình chiếu
của 𝐵, 𝐴, 𝐸, 𝐷, 𝐶 trên đường thẳng 𝐷. Chứng minh rằng:
a) 𝐸𝐼 = 𝐷𝐽 và 𝐷𝐽 =𝐴𝐻/2
b) 𝐵𝐹 + 𝐶𝐾 = 𝐴𝐻.
Cho ∆𝐴𝐵𝐶 có trung tuyến 𝐴𝐷, trọng tâm 𝐺. Qua 𝐺 kẻ đường thẳng 𝑑 cắt các cạnh 𝐴𝐵, 𝐴𝐶. Gọi 𝐸 là trung điểm 𝐴𝐺. Gọi 𝐹, 𝐻, 𝐼, 𝐽, 𝐾 là hình chiếu của 𝐵, 𝐴, 𝐸, 𝐷, 𝐶 trên đường thẳng 𝐷. Chứng minh rằng:
a) 𝐸𝐼 = 𝐷𝐽 và 𝐷𝐽 =𝐴𝐻/2. b) 𝐵𝐹 + 𝐶𝐾 = 𝐴𝐻
Cho ∆𝐴𝐵𝐶. Trên 𝐵𝐴, 𝐶𝐴 lấy điểm 𝐷, 𝐸 sao cho 𝐵𝐷 = 𝐶𝐸. Gọi 𝐺, 𝐻, 𝐼 ,
𝐽 là trung điểm của 𝐵𝐸, 𝐷𝐸, 𝐶𝐷, 𝐵𝐶. Chứng minh rằng 𝐺𝐼 ⊥ 𝐻𝐽.
Cho hình thoi 𝐴𝐵𝐶𝐷 (góc a > 90 độ). Gọi 𝐸 là hình chiếu vuông góc của 𝐴 trên 𝐵𝐶, 𝐹 là hình
chiếu vuông góc của 𝐶 trên 𝐴𝐷.
a) Tứ giác 𝐴𝐸𝐶𝐹 là hình gì? Vì sao?
b) 𝐵𝐷 cắt 𝐴𝐸 tại 𝐻, cắt 𝐶𝐹 tại 𝐾. Chứng minh rằng 𝐴𝐾 = 𝐶𝐻.
c) Gọi 𝐼 là giao điểm của 𝐴𝐾 và 𝐶𝐷, 𝐽 là giao điểm của 𝐶𝐻 và 𝐴𝐵. Chứng minh rằng 𝐸𝐼 ⊥ 𝐸𝐽
Cho hình bình hành ABCD. M là trung điểm AB. Nối C với M. Đường thẳng
qua A song song với CM cắt CD ở N.
a) Chứng minh rằng tứ giác AMCN là hình bình hành.
b) Gọi O là giao điểm của AC và MN.Chứng minh rằng B,0,D thẳng hàng.
Cho hình bình hành ABCD. M là trung điểm AB. Nối C với M. Đường thẳng
qua A song song với CM cắt CD ở N.
a) Chứng minh rằng tứ giác AMCN là hình bình hành.
b) Gọi O là giao điểm của AC và MN.Chứng minh rằng B,0,D thẳng hàng
Cho hình bình hành ABCD. Gọi H và K lần lượt là hình chiếu của A và C trên đường chéo BD.
a)v Chứng minh rằng DH = BK
b) Chứng minh rằng tứ giác AHCK là hình bình hành
c) Gọi O là trung điểm của HK. Chứng minh rằng ba điểm A, O, C thẳng hàng.