\(a,\left\{{}\begin{matrix}\widehat{AKH}=\widehat{HMC}\left(=90\right)\\\widehat{AHK}=\widehat{MHC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AHK\sim\Delta CHM\left(g.g\right)\)
\(b,\left\{{}\begin{matrix}\widehat{AKC}=\widehat{ANB}\left(=90\right)\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AKC\sim\Delta ANB\left(g.g\right)\\ \Rightarrow\dfrac{AN}{AK}=\dfrac{AB}{AC}\)
\(c,\left\{{}\begin{matrix}\widehat{HAN}+\widehat{AHN}=90;\widehat{BHM}+\widehat{HBM}=90\\\widehat{AHN}=\widehat{BHM}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\widehat{HAN}=\widehat{HBM}\)
\(\left\{{}\begin{matrix}\widehat{BMA}=\widehat{AMC}\left(=90\right)\\\widehat{HBM}=\widehat{HAN}\end{matrix}\right.\Rightarrow\Delta BHM\sim\Delta ACM\left(g.g\right)\Rightarrow\dfrac{MH}{CM}=\dfrac{MB}{MA}\Rightarrow MH\cdot MA=MB\cdot MC\)