Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nghĩa Nguyễn

Cho các số thực x,y,z thoả mãn điều kiện \(\hept{\begin{cases}x\ge2;y\ge9;z\ge1951\\x+y+z=2016\end{cases}}\).Tìm giá trị lớn nhất của xyz

Hung nguyen
14 tháng 2 2017 lúc 14:30

Theo đề bài ta có:\(x+y+z=2016\)

\(\Rightarrow2016-z=x+y\ge2+9=11\)

\(\Rightarrow z\le2016-11=2005\)

Ta lại có: \(x^2+y^2\ge2xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{\left(2016-z\right)^2}{4}\)

\(\Leftrightarrow xyz\le\frac{\left(2016-z\right)^2}{4}.z=\frac{z^3}{4}-1008z^2+\frac{2016^2z}{4}\)(1)

Xét hàm số: \(f\left(z\right)=\frac{z^3}{4}-1008z^2+\frac{2016^2z}{4}\)

Ta chứng minh \(f\left(z\right)\) nghịch biến trên \(z\in\left[1951;2005\right]\)

Với mọi \(a,b\in\left[1951;2005\right]\)sao cho với \(a< b\) thì

\(f\left(a\right)-f\left(b\right)=\frac{a^3}{4}-1008a^2+\frac{2016^2}{4}a-\frac{b^3}{4}+1008b^2-\frac{2016^2}{4}b\)

\(=\frac{1}{4}\left(\left(a^3-b^3\right)+\left(-4032a^2+4032b^2\right)+\left(2016^2a-2016^2b\right)\right)\)

\(=\frac{1}{4}\left(a-b\right)\left(a^2+ab+b^2-4032a-4032b+2016^2\right)\)

\(>\frac{a-b}{4}.\left(1951^2+1951.1951+1951^2-4032.2005-4032.2005+2016^2\right)\)

\(=\frac{a-b}{4}.\left(-684861\right)>0\)

\(\Rightarrow f\left(a\right)-f\left(b\right)>0\)

\(\Rightarrow\)Hàm số nghịch biến trên \(\left[1951;2005\right]\)

\(\Rightarrow\)Hàm số đạt giá trị lớn nhất tại z nhỏ nhất

\(\Rightarrow Max\left(f\left(z\right)\right)=\frac{1951^3}{4}-1008.1951^2+\frac{2016^4}{4}.1951=2060743,75\)(2)

Từ (1) và (2) ta có: \(Max\left(xyz\right)=2060743,75\) tại \(\left\{\begin{matrix}x=y=32,5\\z=1951\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn Anh Khoa
Xem chi tiết
katherina
Xem chi tiết
Nguyễn Yến Vy
Xem chi tiết
Phú Nguyễn
Xem chi tiết
lê thị tiều thư
Xem chi tiết
sakura
Xem chi tiết
Ngịch ngợm
Xem chi tiết
Ngô Hoài Thanh
Xem chi tiết
Ngô Hoài Thanh
Xem chi tiết